
SAC: A System for Big Data Lineage Tracking

Mingjie Tang∗, Saisai Shao∗, Weiqing Yang∗,Yanbo Liang∗,Yongyang Yu†,Bikas Saha∗, Dongjoon Hyun∗
∗Hortonworks †Facebook

{tangrock, saisai, yangweiqing001}@gmail.com, {yliang, bikas}@hortonworks.com, yongyangyu@fb.com

Abstract—In the era of big data, a data processing flow
contains various types of tasks. It is nontrivial to discover the
data flow/movement from its source to destination, such that
monitoring different transformations and hops on its way in an
enterprise environment. Therefore, data lineage or provenance
is useful to learn how the data gets transformed along the way,
how the representation and parameters change, and how the data
splits or converges after each hop. However, existing systems offer
limited support for such use cases in a distributed computing
setup. To address this issue, we build Spark-Atlas-Connector
(short as SAC), a new system to track data lineage in a distributed
computation platform, e.g., Spark. SAC tracks different processes
involved in the data flow and their dependencies, supporting
different data storage (e.g., HBase, HDFS, and Hive) and data
processing paradigms (e.g., SQL, ETL, machine learning, and
streaming). SAC provides a visual representation of data lineage
to track data from its origin to downstreams, and is deployed
in a distributed production environment for demonstrating its
efficiency and scalability.

Index Terms—data provenance and lineage, big data compu-
tation, machine learning

I. INTRODUCTION

Data provenance (or data lineage) provides historical

records of data and its origins. The provenance of data

generated by complex transformations is of considerable value

to different applications, e.g., data lineage with metadata

management, data debugging to trace root reason for data

errors, data trust to quickly respond to business opportunities

and regulatory challenges, and data security to place access

control for data query based on the data lineage [11].

The use of data provenance is proposed in distributed

systems to trace records through a dataflow (i.e., data pipeline),

replay the dataflow on a subset of its original inputs and

debug dataflows. To accomplish such tasks, one needs to keep

track of the set of inputs to each operator, which are used to

derive each of its outputs. For example, one can ascertain the

quality of the data based on its ancestral data and derivations,

backtrack sources of errors, allow automated re-enactment of

derivations to update data.

For big data applications, data provenance is more critical

with big lineage. Take Facebook–Cambridge Analytica data

scandal as an example. It is reported University of Cam-

bridge distributed the data from the personality quiz app

“myPersonality" to hundreds of researchers via a website

with insufficient security provisions, which made user data

vulnerable to access for four years. More than 3 millions of

personal information of Facebook users are shared without

sufficient monitoring. The investigations by Facebook and the

Information Commissioner’s Office are trying to determine

who accessed these data and what it was used for. However,

as it was shared with so many different people, tracking

everyone that has a copy and what they did with it proves

very difficult. Similarly, personal data like user’s activities and

website click logs are used to train machine learning model

for advertisements and recommendations. However, users are

unaware of how and where the personal data are used in the

real-world applications.
Even though the use of data lineage approaches is a

promising way for big data management, the process is rather

complex. The challenges include scalability of the lineage

store, fault tolerance of the lineage store, accurate capture

of lineage for black box operators and many others. These

challenges must be addressed carefully and trade-offs between

them need to be evaluated to make a realistic design for data

lineage capture. Current approaches supporting data lineage

in big data systems, e.g., RAMP [16], Newt [13], Titan [14],

Smoke [18] do not meet the requirement of real applications

due to following limitations: (1) They fail to design a uniform

data pipeline involving various tasks like machine learning,

SQL, OLAP, and streaming. Their solutions cannot be applied

to specific applications, and track data processing across Spark

Jobs, e.g., [14]. (2) They do not support a unified data

model and query language to manage the data lineage. More

importantly, they do not have a common platform to manage

large scale data lineage, suffering scalability issues. (3) Finally,

when a data pipeline incurs multiple data storage sources,

existing approaches fail, and cannot understand the lineage

across data platforms. These limitations prevent efficient sup-

port for large scale interactive lineage management.
In this work, we introduce SAC, a system that enables

interactive data provenance in Apache Spark [22]. SAC can

track information about the existing data continuously. It has

a visual representation of data lineage, effortlessly raising the

maturity of data governance programs. The contributions of

this work are listed as below.

• We propose a new data entity model to represent data

processing unit in a data pipeline, and provide a query

language and an interactive interface to understand the

captured data lineage clearly.

• We build data lineage for the entire data processing

pipeline across different data sources and jobs. The

system is able to capture data lineage for different compu-

tation jobs, e.g., Spark machine learning, Spark streaming

and Spark SQL jobs, as well as different data storage, e.g.,

Apache HBase, Apache Hive, HDFS, Apache Kafka.

• We build the system to track Spark applications without

1964

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00215

additional users’ inputs, which captures the lineage au-

tomatically. The easy-to-use and plug-in implementation

is able to support Spark ecosystem without modifications

of Spark internal.

• We demonstrate the system in a real production environ-

ment, since it natively supports existing system without

any modification of Spark internal. The released version

is already adopted by multiple companies and end-users.

The rest of this paper is organized as follows. Section II

lists the related work. Section III provides the data model and

programming interface of the system. Section IV gives the sys-

tem architecture and design principles. Finally, experimental

studies are given in Section V, and Section VI concludes the

work.

II. RELATED WORK

An industry data workflow or pipeline consists of multiple

stages. Take a data pipeline for processing Internet of things

(IoT) as an example. The IoT data is at first congested and pre-

processed via Apache Kafka [6] to distribute input streaming

data to different processing units. For example, a Spark

streaming job is used to extract, transform, and load (ETL)

the input data into some physical storage (e.g., HDFS [4],

HBase [3], and Hive [5]) for further analysis. At the same time,

OLAP jobs based on Spark SQL [9] analyze the cleaned data.

Further more, a machine learning model based on Spark ML is

trained from the historical data. Considering the ecosystem of

Hadoop [2], this situation becomes more complex if multiple

third-party packages (e.g., distributed matrix computation [21],

and spatial data processing [19], [20], [15]) based on Spark

are deployed in the same cluster.

Data provenance and lineage tracking is widely studied in

database and big data platforms [11], [16], [8], [7], [12]. Data

lineage is widely used in various applications from data se-

curity to data debugging. More recently, different systems are

proposed to track data lineage along the big data ecosystems.

For example, RAMP [16] is built to track jobs for Hadoop

and Hyracks computation platform; Newt [13] is used to

track data lineage for MapReduce job; Titan [14] debugs a

Spark job based on the extension of Spark RDD; Inspector

Gadget (IG) [17] monitors Apache Pig jobs; Arthur [10] de-

bugs Spark job by re-executing the jobs. Although addressing

several challenges of data lineage tracking for big data, there

are still some limitations to overcome when tracking data

lineage.

At first, most of exising work mainly consider one type

of jobs or specific data storage. Newt [13] tracks lineage for

MapReduce job, and Titan [14] builds lineage for Spark RDD.

Such a design is easy to implement but ignore the data storage

characteristics. For example, an end-user at first reads data

from an HBase table, then writes the query results into a

Hive table. We can imagine there would be a lineage to track

such transformations from an HBase table to a Hive table.

The metadata of HBase and Hive need to be recorded when

the system computes the jobs. However, most approaches do

not track data lineage for the entire data processing pipeline.

In addition, most of existing systems fail to provide a user-

friendly interface to visualize the data lineage, as well as an

query interface to manage the data lineage graph. In this work,

we build a system to track data lineage for different Spark

jobs in a processing pipeline. The users are able to interact

with the tracking lineage via a web interface or a command-

line terminal. The built system is already deployed in real

production environments, and is able to track data lineage for

more than 100GB per day.

III. DATA MODEL

In this section, we introduce the data model to manage data

lineage.

A. Coarse vs. Fine-Grained Provenance

Ikeda et al. [13] modify the MapReduce and Hadoop

file system for fine-grained granularity provenance tracking.

However, fine-grained provenance needs to modify the Hadoop

system internal greatly, and suffers from expensive overhead

to record the lineage. This impedes these systems to be used

in real-world applications for expensive system maintenance

and performance consideration. In this work, we mainly focus

on coarse-grained granularity provenance tracking for the

following reasons. At first, the built data provenance system

should not incur expensive overhead to track the lineage, and

slow down the computation job. Secondly, the distributed com-

putation clusters are already deployed into some production

environment, we cannot replace these systems to enforce data

governance. Therefore, we mainly focus on coarse-grained

provenance for general data storage like Hive table, HDFS

file, HBase table, streaming data, machine learning model, and

machine learning data processing data pipelines.

B. Data Model

At first, we formalize a type system to define the data source

and related data processing tasks. This type system is used to

build specific structures for storing different types of metadata,

where the metadata is used to define the data storage and the

relationships between them. In this work, Apache Atlas [1] is

developed to define a model for the metadata objects which

users want to manage. The model is composed of definitions

called “type”. Instances of “type” is called “entitie”. Entities

represent the actual metadata objects being managed.

Consider a table named T , and users wants to model this

table through the built type system and record its metadata.

The schema of Table T contains the following information:

database name, table name, column name, partition-by or

cluster-by specific columns, storage properties. Therefore, we

at first define an entity to record the metadata of table columns

Tc and data storage properties Ts. Then the metadata of Table

T is defined via Tc and Ts. The generated data model is called

Spark_Table type, while this table is created from Spark SQL.

The instance of type Spark_Table is used to record the created

tables in Spark SQL.

Formally, an attribute a is used to define the concept

related to the type system. That is, one attribute is used to

1965

formalize a type. For example, Attribute a is defined with

the following information: {name: string, typeName: string,

isOptional: boolean, isIndexable: boolean, isUnique: boolean,
cardinality: enum}. More specifically, name represents the

name of the attribute; dataTypeName is the metatype name

of the attribute (native, collection or composite); isIndexable
indicates if this property should be indexed on, such that look-

ups can be performed using the attribute value as a predicate

and can be performed efficiently. isUnique stands for any

attribute with a true value. This flag is treated as a primary

key to distinguish this entity from other entities. Cardinality
indicates whether this attribute is required, optional, or could

be multi-valued.

Next, a type (says t) in Atlas is a definition on how a

particular type of metadata object is stored and accessed. A

type t represents one or a collection of attributes that define the

properties for the metadata object. Users with a development

background will recognize the similarity of a type to a “class”

definition of object-oriented programming languages, or a

“table schema” of relational databases. Naturally, an instance

of type t is called entity e. An entity is used to define the

created table T . We demonstrate the introduced concepts (e.g.,

attribute a, type t, and entity e) based on follow running

example.

C. Data Entity

The first kind of entity is called data entity. The data

entity could be (A) SQL related tables, e.g., Spark table and

database, Hive table and database, (B) HBase data storage and

HDFS Data storage, (C) streaming data source (e.g., Kafka

streaming), (D) machine learning model and data pipeline.

For example, a Spark database entity includes following at-

tributes: {name, description, locationUri, properties, owner}.
Therefore, the metadata is recorded into the system once a

Spark table is created. More details of entity design for data

storage will be introduced in a white paper of SAC.

D. Data Processing Entity

Besides the data entity, data operation entity is used to

demonstrate the data processing job itself. Thus, data pro-

cessing entity is an association for a combination of inputs,

outputs and the operation itself. The operation is represented in

terms of a black box, also known as the actor. The associations

describe the transformations that are applied on the data. Each

unique actor is represented by its own association table. An

association itself looks like {i, A, o}, where i is the set of

inputs to the actor A, and o is set of outputs produced by the

actor. Associations or data processing entities are the basic

units of data lineage. Individual associations are later clubbed

together to construct the entire history of transformations that

are applied to the data. In this work, we consider a Spark

application as one process entity. In Spark, the highest-level

unit of computation is an application. A Spark application can

be used for a single batch job, an interactive session with

multiple jobs, or a long-lived server continually satisfying

requests. Thus, one Spark application could be related to

Fig. 1: Architecture of Atlas

different kinds of jobs, e.g., ETL job, machine learning job,

streaming processing job, and SQL job. Then, job information

about one Spark application (e.g., job types, job running time,

and job related query plan) is stored for the processing entity.

IV. SYSTEM ARCHITECTURE

Lazy lineage collection typically captures only coarse-

grained lineage at runtime. These systems introduce low

overhead due to the small amount of lineage they capture. On

the other hand, active collection systems capture the entire

lineage of the dataflow at runtime. The kind of lineage they

capture may be coarse-grained or fine-grained, but they do

not require any further computations on the dataflow after

its execution. Active fine-grained lineage collection systems

incur higher capture overhead than lazy collection systems. In

this work, we adopt lazy and coarse-grained lineage collection

mechanism, since one big data or machine learning job cannot

guarantee one hundred percentage success ratio in most cases.

For example, the OOM (out of memory exception) usually

breaks a Spark job in the middle.

In order to catch up coarse-grained lineage, SAC builds the

connection between Apache Spark and Apache Atlas based

on the Spark event tracker and interface provided by Atlas,

respectively.

A. Apach Atlas

Figure 1∗ presents the system framework of Apache Atlas.

Atlas adopts a graph engine to store the ingested metadata.

This approach provides great flexibility and enables efficient

handling of rich relationships between the metadata objects.

The graph engine is powerful for graph query over the tracked

data lineage. The underlying data storage is HBase for data

entities. Solor is used to index the entities for fast entity

query processing. Atlas provides two external APIs: the Rest

API and Apache Kafka streaming. In terms of messaging

system Kafka, it is useful for communicating metadata objects

to Atlas, and for consuming metadata change events from

Atlas.Atlas uses Apache Kafka as a notification server for

communication between hooks and downstream consumers of

metadata notification events. Events are written by the hooks

and Atlas to different Kafka topics.

∗https://atlas.apache.org/Architecture.html

1966

B. Spark Event Tracking

Based on the hook mechanism of Atlas, we monitor the

Spark job processing via Spark event tracker. Spark event

tracker is one kind of callback function, which is used to

send Spark job related information back to Atlas. Specifically,

SparkListener is a mechanism in Spark to intercept events

from the Spark scheduler, that are emitted over the course of

execution of a Spark application. SAC adopts multiple event

trackers to catch up the status of Spark Jobs. Consider a Spark

SQL related job, we adopt the Spark SQL listener to monitor

the status of Spark SQL DDL or Spark DML. In terms of a

Spark ML job, we develop a new Spark ML job listener to

register the status of an ML job. It could record the Spark ML

pipeline and related data model. More design details about

trackers like fault tolerance, security token management, and

efficient event buffering will be presented in the white paper

later.

V. DEMONSTRATION PLAN

SAC is open source and the technical preview version is

already released†. In this demonstration, we will showcase

how SAC tracks lineage with an end-to-end solution.

A. Demonstration Scenarios

We would demonstrate SAC to track lineage for different

types of data processing jobs and data storage. The data

processing jobs consist of Spark SQL, Spark ML, Spark

streaming job, and the data storage contains local disk (with

different types of data format like Parquet, Arvo, and Json),

HDFS, Hive table, HBase and Apache Kafka. When a Spark

application starts, SAC will transparently track the execution

plan of submitted SQL/DF transformations, parsing the plan

and creating related entities in Atlas.

In addition, we demonstrate how SAC performs data lin-

eage tracking in secure and non-secure cluster setup. For a

non-secure environment, we at first include the built jar of

SAC to be accessible from the Spark Driver, then configure

spark.extraListeners and spark.sql.queryExecutionListeners
accordingly. Next, the related Spark job status can be captured

silently.

For a secure environment, we have to enable the secure con-

nection via secure Kafka client API. Thus, we at first shift to

use Kafka client API by configuring atlas.client.type=kafka in

atlas-application.properties. Meanwhile, this feature depends

on Kakfa delegation token mechanism for performance con-

sideration. Thus, we make sure keytab (a.keytab) is accessible

from the Spark Driver. When running in the cluster mode, we

also need to distribute this keytab to each executor as well.

B. Query Interface

SAC provides the RESTful API to manage the lineage

via command line. In addition, a web-based interface is built

to visualize and query the data lineage interactively. For

data security consideration, Apache Ranger is plugged in and

enforced to protect data security based on users’ privilege.

†https://github.com/hortonworks-spark/spark-atlas-connector

VI. CONCLUSIONS

We have presented SAC, a data lineage tracking system.

It extends Apache Altas and supports different types of data

processing job lineage tracking. SAC is able to plug into the

existing Spark computation cluster seamlessly, and provides

efficient query interface to manage the captured data lineage.

The initial version of SAC is already deployed into real-

world production environments, and the feedback demonstrate

the built system achieve efficient data lineage tracking for

more than 100GB per day. Part of this work is supported

by the National Natural Science Foundation of China (Grant

No. 61802364), cooperated with CNIC, Chinese Academy of

Science.

REFERENCES

[1] “Atlas,” https://altas.apache.org/.
[2] “Hadoop,” http://hadoop.apache.org/.
[3] “Hbase,” https://hbase.apache.org/.
[4] “Hdfs,” https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
[5] “Hive,” https://hive.apache.org/.
[6] “Kafka,” https://kafka.apache.org/.
[7] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich,

and V. Tannen, “Putting lipstick on pig: Enabling database-style work-
flow provenance,” Proc. VLDB Endow.

[8] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques for efficiently
querying scientific workflow provenance graphs,” in EDBT ’10. New
York, NY, USA: ACM, 2010.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: relational data processing in spark,” in SIGMOD 2015, 2015, pp.
1383–1394.

[10] A. Dave, M. Zaharia, S. Shenker, and I. Stoica, “Arthur: Rich post-facto
debugging for production analytics applications.”

[11] B. Glavic, “Big data provenance: Challenges and implications for
benchmarking,” in Revised Selected Papers of the First Workshop on
Specifying Big Data Benchmarks - Volume 8163. New York, NY, USA:
Springer-Verlag New York, Inc., 2014, pp. 72–80.

[12] T. J. Green and V. Tannen, “The semiring framework for database
provenance,” in PODS ’17, 2017.

[13] R. Ikeda, H. Park, and J. Widom, “Provenance for generalized map and
reduce workflows,” in In CIDR, 2011, pp. 273–283.

[14] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. Millstein, and T. Condie, “Titian: Data provenance support in spark,”
Proc. VLDB Endow., vol. 9, no. 3, pp. 216–227, Nov. 2015.

[15] Y. Liang, Y. Yu, M. Tang, C. Li, W. Yang, W. Xu, and R. Zheng,
“Optimizing generalized linear models with billions of variables,” in
CIKM ’18, 2018.

[16] D. Logothetis, S. De, and K. Yocum, “Scalable lineage capture for
debugging disc analytics,” in Proceedings of the 4th Annual Symposium
on Cloud Computing, ser. SOCC ’13. New York, NY, USA: ACM,
2013, pp. 17:1–17:15.

[17] C. Olston and B. Reed, “Inspector gadget: A framework for custom
monitoring and debugging of distributed dataflows,” in SIGMOD ’11.
ACM, 2011.

[18] F. Psallidas and E. Wu, “Smoke: Fine-grained lineage at interactive
speed,” Proc. VLDB Endow.

[19] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Lo-
cationspark: A distributed in-memory data management system for big
spatial data,” PVLDB, 2016.

[20] W. Yang, M. Tang, Y. Yu, Y. Liang, and B. Saha, “Shc: Distributed query
processing for non-relational data store,” in ICDE 2018, April 2018, pp.
1465–1476.

[21] Y. Yu, M. Tang, W. G. Aref, Q. M. Malluhi, M. M. Abbas, and
M. Ouzzani, “In-memory distributed matrix computation processing and
optimization,” in ICDE’17, 2017, pp. 1047–1058.

[22] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI’12.
San Jose, CA: USENIX, 2012, pp. 15–28.

1967

