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High-Dimensional Data
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Abstract—Given a set of multidimensional data points, skyline queries retrieve those points that are not dominated by any other points
in the set. Due to the ubiquitous use of skyline queries, such as in preference-based query answering and decision making, and the
large amount of data that these queries have to deal with, enabling their scalable processing is of critical importance. However, there
are several outstanding challenges that have not been well addressed. More specifically, in this paper, we are tackling the data straggler
and data skew challenges introduced by distributed skyline query processing as well as the ensuing high computing cost of merging
skyline candidates. We thus introduce a new efficient three-phase approach for large scale processing of skyline queries. In the first
preprocessing phase, the data is partitioned along the Z-order curve. We utilize a novel data partitioning approach that formulates
data partitioning as an optimization problem to minimize the size of intermediate data. In the second phase, each computation node
partitions the input data points into separate sets, and then performs the skyline computation on each set to produce skyline candidates
in parallel. In the final phase, we build an index and employ an efficient algorithm to merge the generated skyline candidates. Extensive
experiments demonstrate that the proposed skyline algorithm achieves more than one order of magnitude enhancement in performance
compared to existing state-of-the-art approaches.

Index Terms—skyline query, query processing, high dimensional data, parallel
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1 INTRODUCTION
Skyline query processing has been widely studied in
centralized systems [1], [2], [3], [4], [5]. A skyline query
returns a set of data points that are not dominated by any
other points in a given dataset. In a multidimensional
space, a point dominates another point if it is better
in at least one dimension and not worse in all other
dimensions. Figure 1(a) shows a sample dataset of hotels
in New York City. The x-axis indicates the distances to
the downtown area and the y-axis indicates daily rates
of the hotels. For example, Hotel p1 is the nearest to
downtown but has the most expensive daily rate. Hotel
p5 dominates Hotel p9 since p5 has a shorter distance
and a lower rate.

For very large data sets (e.g., more than 10 million
points), skyline queries require expensive computations
and exhibit slow response times. To improve the run-
time performance, a natural idea is to parallelize the
computation. Skyline queries [6], [7], [8], [9], [6], [10]
can be executed in parallel via the following three
stages: (i) partition the input datasets into blocks with
equal size, (ii) perform skyline computations in each
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Fig. 1: Skyline Example and Z-order Curve

worker and output skyline candidates, and (iii) merge
skyline candidates to get the final skyline sets. There
have been several proposed techniques along these lines.
A grid-based partitioning scheme (e.g., [9], [11], [12]),
recursively divides some dimensions of the data into
multiple parts, and computes skyline candidates for
each partition. An angle-based partitioning scheme [8]
assumes that skyline points are usually located around
the origin. Therefore, skyline points can be distributed
in a balanced way if the partitioning scheme is able to
transform the points from the original Cartesian coordi-
nates to hyperspherical coordinates. After local process-
ing of the partitions, the generated skyline candidates are
merged together to generate global skylines. Although
existing approaches address several challenges in skyline
query processing, they suffer from two major drawbacks:
(i) inability to overcome the Data skew and (ii) inability
to handle Data stragglers introduced by skyline query
processing in distributed environments, when the di-
mensionality of the input data points is high.

Data skew arises when some workers process more
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data points than others. Therefore, we need a new
approach that would evenly distribute input data over
the workers; i.e., each worker receives a fair share of
data points in the order of |P |/M , where |P | is the
size of the dataset, and M is the number of data par-
titions. Data stragglers refers to the situation where some
workers spend significantly longer time than others to
execute their tasks, because of reasons such as faulty
disk, server failure, and the bad runtime performance of
local processing algorithms [13], [14]. For example, the
runtime performance of centralized skyline computation
approaches (e.g., [2], [3], [4], [5]) degrades greatly with
the increase of skyline points. Thus, if one worker is
allocated more skyline points, it will experience a sig-
nificant increase in its execution time. We thus need a
new approach that would guarantee that each worker re-
ceives a fair share of skyline points. In addition, the size
of intermediate skyline candidates, which are generated
from the second stage, is another major factor impacting
performance. For example, some workers may output
large amounts of skyline candidates, which leads to large
communication and I/O overhead to move and store
intermediate data points. However, in most cases, only
a small portion of these computed skyline candidates
will contribute to the final skyline result set, since many
intermediate points generated from one worker could
be dominated by skyline points from other workers.
Therefore, we also need to minimize the redundant
skyline candidates.

Last but not the least, an efficient algorithm is crucially
important to merge skyline candidates, since the size of
skyline candidates may still be large, leading to poor per-
formance of traditional skyline algorithms. For example,
state-of-the-art skyline algorithms [2], [5] are sensitive to
the number of skyline candidates. Therefore, without a
specific optimized skyline candidate merging algorithm,
the final stage of merging skyline candidates could be a
bottleneck. Note that if the number of skyline points is
huge, users could rank the computed skyline sets based
on user defined functions such as in [15]. However, how
to rank the skyline points based on a user’s preference
is not our focus in this work.

The main contributions of this paper are as follows:
1) We introduce three different approaches to par-

tition input datasets for parallel computation of
skyline candidates: (i) Use a simple Z-order curve
from the literature. (ii) Based on skyline distribu-
tion among partitions, split partitions into separate
groups to overcome the data straggler issue for
distributed skyline query processing. (iii) Group
several partitions into one group based on the
skyline dominance volume, which would guaran-
tee that each worker receives an equal amount of
input data and skyline points, and would prune
redundant intermediate skyline candidates.

2) We propose an efficient algorithm to merge skyline
candidates by employing a data index for searching
skyline sets, which enhances the query processing

time by reducing redundant dominance testing.
3) We realize the proposed approach using a Hadoop

MapReduce platform. We conduct large-scale eval-
uation on well-known benchmarks and compare
the newly developed approach against other state-
of-art algorithms. Our experiments demonstrate
that the proposed algorithms can achieve an or-
der of magnitude speedup over state-of-the-art ap-
proaches.

The rest of the paper proceeds as follows. Section 2 dis-
cusses related work. Section 3 presents the preliminaries
for skyline query and Z-order curves. It also presents
an overview of distributed skyline query processing.
Section 4 investigates the property of Z-order curves
and a data partitioning approach based on these curves.
Section 5 gives implementation details about the Z-
order curve data partitioning over the MapReduce plat-
form, and introduces a tree-based approach for merging
skyline candidates. Section 6 reports the experimental
results and Section 7 concludes this paper.

2 RELATED WORK

The skyline database operator was first formalized by
Borzsony et al. [1] and was widely studied for build-
ing users’ personalized queries over multi-dimensional
datasets (e.g., Web and biological data) [16]. Several
sequential skyline algorithms [2], [3], [4], [5] have been
been studied. The Z-search algorithm proposed by Ken
et al. [5] is the state-of-the-art skyline computation al-
gorithm. In our work, we use an algorithm to merge
skyline candidates that utilizes a Z-btree index similar
to that of the Z-search algorithm. We further enhance
performance by introducing new data partitioning and
grouping techniques as explained in Section 4.

Distributed skyline computation for big data has re-
ceived more attention recently. Hose and Vlachou [17]
provide a good survey of distributed skyline algo-
rithms. Different from traditional more tightly-coupled
parallel platforms, share-nothing platforms (e.g., the
Hadoop MapReduce platform) are becoming more at-
tractive because of their simplicity. These platforms re-
quire partitioning and distributing the input data over
multiple compute nodes. In the random partitioning
scheme [18], local data chunks share similar distribu-
tion and structure as the original data. A grid-based
partitioning scheme [9], [11] recursively divides some
dimensions of data into two (or more) parts. The skylines
are computed for each partition and local results are
merged into the global skylines. However, grid-based
partitioning approaches suffer from the unbalanced load
distribution over the nodes. To overcome this, the angle-
based partitioning scheme [8], [19] has been proposed.
This scheme takes into account the fact that points are
usually located around the origin. Thus, skyline points
can be distributed in a balanced way by transform-
ing the points from the Cartesian coordinates into the
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TABLE 1: Definitions of symbols

Symbol Definition
Rd d-dimensional vector space
n, |P | Number of points in dataset P
P̌ A sample dataset from dataset P
S A set of skyline points in dataset P
Š Skyline points from sample dataset P̌
n̂ Skyline candidates
p.dj j-th dimensional value of point p
θ(pi) Z-address for point pi
p ` q Point p dominates point q
p ⊥ q Point p is incomparable with point q
M Number of data partitions
Pti A data partition for dataset P
P̂ ti RZ-region for data partition Pti
Gm A group of several data partitions
|Ptsi| Number of skyline points in Partition Pti

hyperspherical coordinates. The projection-based parti-
tioning scheme [7] adopts a similar idea to the angle-
based approach but projects data onto a hyperplane.
The hyperplane based approach maps data onto the
hyperplane, based on the assumption that data transfor-
mation is affordable when the data size is small. In our
experiments, we apply an idea similar to the projection-
based approach to normalize data values for each point,
and demonstrate that our proposed approach is more
than one order of magnitude faster than angle-based and
projection-based approaches.

Köhler et al. [7] propose a bottom-up merging tech-
nique to compute the final skyline. However, this
method is not applicable in a Hadoop framework since
each round of merging needs to write the intermediate
data to HDFS and restart a new MapReduce job. Park et
al. [20] build a Quadtree for sampling data, and finding
the dominance relationships among different partitions.
However, a Quadtree index usually fail to partition the
high-dimensional input data in a balanced way [21].
More recently, Liu et al. [12] used the bit-string to rep-
resent grid-based partitioning, which enables pruning
more data points before final skyline computation. We
compared the proposed approach with the bit-string
based approach and we achieved ten times speedup.

The approach developed in this work is different from
the previous approaches because of the following three
reasons: (1) the Z-order curve based data partitioning
maps high–dimensional data into a low-dimensional
data, which facilitates dividing the high-dimensional
data space evenly; (2) the novel dominance-based data
partition grouping enables efficient pruning of skyline
candidates; and (3) the introduction of a new index-
based approach for merging skyline candidates.

3 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we present different concepts that are
needed in the rest of the paper.

3.1 Skyline Computation

Given a d-dimensional space D ⊆ Rd and a set of data
points P ⊆ D, we use p.dj to denote the value of Point p
in the j-th dimension. Table 1 summarizes the symbols
used in this paper.

Definition 1: Dominance. Point p dominates point q if
p.di < q.di for at least one dimension i, and p.dj ≤ q.dj
for all the other dimensions, j 6= i. This is expressed
as p ` q. p 0 q means p does not dominate q. If p 0 q
and q 0 p, we say point p is incomparable with point q,
denoted as p ⊥ q.

Definition 2: Skyline. The skyline of P is a set of
points S, S ⊆ P , such that points in S are not dominated
by any other points in P .

The dominance transitivity and non-comparability
properties were presented in [1], [5]. According to the
transitivity property, if a point p dominates all the points
in P , and another point p̂ dominates p, then p̂ dominates
all the points in P . The transitivity property guarantees
the correctness of pruning in parallel skyline compu-
tation. After each worker computes skyline candidates
from the horizontally partitioned dataset, the merge of
all these candidates is guaranteed to produce the correct
skyline since all the points in this results will dominate
any point in any partition.

3.2 Z-order Curve for Skyline Computation

A Z-order space filling curve [22] maps a data point
from a high-dimensional space to a one dimensional
space, where each point is represented by a unique
number, called Z-address. A Z-address is a binary string
calculated by interleaving the bits of all coordinates
of a data point. For example, Point p = (3, 5) with
binary values of (011, 101), has the related Z-address of
”011011”. The first two bits ”01” of the Z-address are
obtained from the first bits of 011” and 101”, Similarly,
the rest of the Z-address can be computed accordingly by
interleaving the bits of the remaining coordinates. The Z-
search algorithm [5] explores clustering and monotonic
ordering properties of a Z-order curve, and develops a
data structure called ZB-tree for skyline computation.
Generally speaking, the Z-search method is a hybrid
algorithm which uses a ZB-tree index and RZ-region
dominance test. Below we introduce the concept of an
RZ-region as defined by [5].

Definition 3: An RZ-region R is the smallest square
that covers a region bounded by extreme points’ Z-
addresses [α, β], and R is the smallest square area cov-
ered by two Z-addresses minpt(R) and maxpt(R).
Notice, [α, β] ⊆ [minpt(R),maxpt(R)]. By selecting the
common prefix of α and β, minpt(R) is computed by
setting all 0’s to the rest of bits other than the common
prefix, and maxpt(R) is computed by setting all 1’s to
the rest of bits other than the common prefix. Therefore,
all the points in a RZ-region R are dominated by the
data point at minpt(R).
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Fig. 2: RZ-region and ZB-tree

For example, suppose an RZ-region R covers 3 differ-
ent points, whose Z-addresses are “10110”, “10011”, and
“10010”. The common prefix is “10” and the boundary
values are α = “10010” and β = “10110” after sorting
the Z-addresses. Therefore, minpt(R) = “10000” and
maxpt(R) = “10111”. The rectangle R1[p1, p2] is the RZ-
region for Points p1 and p2 in Figure 2(a). A naı̈ve way
to compute dominance relationships between regions is
by performing a dominance test between each pair of
data points. However, the computation cost is O(n2),
which is prohibitive for big data. Based on the RZ-region,
the dominance test among data pairs can be performed
by testing the dominance relationships among the RZ-
regions as follows.

Lemma 1: Given two RZ-regions Ri and Rj , there are
three possible dominance relationships:

1) if maxpt(Ri) ` minpt(Rj), then Ri ` Rj ;
2) if minpt(Ri) 0 maxpt(Rj) and minpt(Rj) 0 maxpt(Ri),

then Ri ⊥ Rj ;
3) if maxpt(Ri) 0 minpt(Rj), but minpt(Ri) ` maxpt(Rj),

then Ri dominates a part of Region Rj , we denote
this case as Ri |` Rj .

Example 1: Consider Figure 2 (a), maxpt(R1) dom-
inates minpt(R4). Thus, RZ-region R1 dominates RZ-
region R4. It is obvious that RZ-region R2 is incompara-
ble to RZ-region R3. In this way, the all-pairs dominance
test can be avoided between these two RZ-regions.

Based on the RZ-regions, each point is mapped to its
Z-address, and a ZB-tree is built for the mapped data in
a bottom-up fashion. A ZB-tree is a balanced tree, whose
leaf nodes store the data points and internal nodes store
the RZ-region of the children nodes, e.g., Figure 2 (b).
More details about searching skyline points from a ZB-
tree can be found in the work of Lee et al. [5]. For skyline
computation on big datasets, extending the sequential Z-
search algorithm to a parallel counterpart is nontrivial,
and raises several challenges as described below.

3.3 Challenges of Parallel Skyline Query Processing
Unbalanced Partitioning. An ideal data partitioning
requires each worker to be assigned an equal amount of
input data, i.e., |P |/M . However, most data partitioning
approaches, such as grid-based partition [9], [11], angle-
based [8], and quad-tree-based [20], fail to guarantee

such balanced assignment when the input data dimen-
sionality is high, e.g., dimension > 5.

Straggling Workers. There are cases where certain
workers might run into straggler issues. For example,
the data points allocated to one worker may contain
a small percentage of skyline points. This worker may
generate skyline candidates that would be dominated
by skyline points from other workers at the end. Thus,
this worker would induce unnecessary disk and net-
work I/O cost to store intermediate results. In addition,
one worker might be allocated data points containing
more skyline points than others, which would degrade
the runtime performance of local skyline algorithms as
well. The runtime performance of the state-of-art skyline
computation algorithm (i.e., Z-search [5]) is bound by
the number of skyline points, that is, its computation
complexity is O(d|S| logd n), where d is the dimension of
the dataset, |S| is the number of skyline points, and n is
the number of input data points. Therefore, even if each
worker receive an equal amount of input data points,
some workers may run into the data straggler issue and
become the bottleneck of skyline query processing.

Large Candidate Set. Local skyline computation on
each worker may generate a large amount of skyline
candidates. For example, in our experiments we were
able to compute 2 million skyline candidates from a 12
million input dataset (anti-correlated distribution). It is
not feasible to execute the dominance test for all-pairs
of skyline candidates.

3.4 Problem Statement

Given an input dataset P , we need to find a good
partitioning for P , and an efficient algorithm to merge
the skyline candidates from the different partitions.
Intuitively, to overcome the data skew and stragglers
challenges, data points should be mapped from a high-
dimensional space to a low-dimensional space. There-
fore, we introduce the space-filling curve (in this case,
z-order curve) to achieve this goal and then utilize
the index over the mapped data for skyline candidates
merging. The role of this tree index is to prune unneces-
sary data dominance testing by executing the dominant
test over the index rather than over skyline candidates,
which makes the operation space- and time-efficient.

4 Z-ORDER CURVE BASED PARTITIONING

In this section, we first present a new z-order curve
based data partitioning strategy to overcome data skew
and tackle the unbalance challenges. Then, we develop
the data partition grouping approach to reduce the data
stragglers. Finally, we introduce the dominance-based
partition grouping approach to minimize the size of
intermediate skyline candidates, while overcoming the
data skew and data stragglers issues.



5

4.1 Data Skew Reduction

To handle data skew, it is important that data is equally
partitioned and assigned to each worker. Hence, we
propose the following procedure. Given an input dataset
P containing |P | data points, we divide it into multiple
partitions Ptm, 1 ≤ m ≤ M , s.t. each partition has the
number of points |Ptm|. Naturally, |P | =

∑M
m=1 |Ptm|.

To balance data between partitions, we need to minimize
the variance of the data distribution in each Ptm, that
is, the function

∑M
m=1(|Ptm| − |P |/M)2 needs to be

minimized.
Example 2: We study skyline distributions in space for

two real datasets, e.g., NBA and HOU, which follow anti-
correlated and independent distributions respectively1.
The NBA dataset contains the latest top 350 players’
statistics in the 2013-2014 season (2 months). Each record
corresponds to an NBA player’s performance in 7 as-
pects, such as scores, rebounds, steal, etc. HOU consists
of 1k 6-dimensional data points, each record represent-
ing the percentage of an American family’s annual ex-
pense on 6 types of expenditures, such as electricity, gas,
and so on. Given the input dataset, we first compute the
skyline set, and then analyze its distribution in the space.

A Z-order curve maps the computed skyline points
from a high dimensional space to a one dimensional Z-
address space, and skyline points are ordered in the Z-
address space similar to Figure 1 (b). Figure 3 shows
the histograms of skylines along the Z-order curves.
We make the following observations: (i) skyline points
for high dimensional data are not only in the low and
high buckets (with smaller and higher Z-addresses, re-
spectively), (ii) skyline points are not clustered around
the origin in a high dimensional space as in a low
dimensional space, and (iii) the skyline points tend to
distribute in a more balanced fashion along the buckets
of the z-order curve data space.

Motivated by skyline distribution along the Z-address
space, we utilize the Z-order curve to map a high-
dimensional data point (say p) to one dimensional Z-
address, say θ(p), based on the skyline point distribution
along the mapped space , say θ(p). In the one dimen-
sional space, the input dataset P is partitioned evenly
such that each partition contains the same amount of
data, i.e., |P |/M . Therefore, we can guarantee the input
data points distribution in each partition is even based
on the following.

Z-order Curve-based Partitioning. This process selects
(M − 1) points from dataset P as pivots, and split the
points of P into M disjoint partitions, where each point
is assigned to the partition with its closest pivot by the
corresponding Z-address.

Let p1, p2, . . . , pM−1 be the (M − 1) selected pivot
points. Without loss of generality, the Z-addresses of the
pivot points can be sorted, i.e., θ(p1) < θ(p2) < . . . <
θ(pM−1). A data point p ∈ Ptm if θ(p) ∈ [θ(pm−1), θ(pm)).

1. Those datasets are collected from www.nba.com, www.ipums.org
respectively.
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Fig. 3: Histograms and quadratic fitting curves for Sky-
line points along the Z-order curve in two real-world
datasets

Note that these pivot are learned via the following steps,
(1) computing samples for input data points; (2) sorting
samples via their z-order address; (3) calculating the
pivots s.t. each partition has an equal amount of samples
in the ordered data space. Overall, we split the input
data points into partitions with balanced inputs based
on the selected pivots.

4.2 Reducing Data Stragglers

The input dataset is partitioned according to the Z-order
curve-based partitioning described in Section 4.1. For
example, we can partition the input dataset in Figure 1b)
into four parts along the mapped Z-address, such that
each partition has approximately the same amount of
input. However, we observe that Partitions II and IV
have very few skyline points (one dark dotted point),
while the other two partitions, Partitions I and III, con-
tribute most of the skyline points. The number of skyline
points in a partition affects the local computation cost
for the corresponding worker. Therefore, as introduced
in Section 3.3, this uneven skyline distribution raises
the issue of data stragglers through impeding runtime
performance for some workers. A natural idea is to di-
vide partitions into disjoint groups based on the skyline
distribution among partitions. Formally,

Definition 4: Let dataset P = ∪1≤m≤M̂Gm, where Gm

is a group consisting of a set of partitions of dataset
P , Gi

⋂
Gj = ∅ for i 6= j and M̂ is the number of

groups. Each group Gm consists of several partitions,
i.e., Gm = ∪1≤i≤m′Pti, where Pti is a partition, and m′

is the number of partitions in group Gm.
We observe that if a partition Pti contains much more

skyline points than a partition Ptj , then it is more
likely that Pti contains skyline points that dominate
data points in partition Ptj . For example, in Figure 4(a),
partition Pt1 has more skyline points than partition Pt16.
Intuitively, we can group data points belonging to parti-
tions Pt1 and Pt16, into the same group. Then, for data
partitions in the same group (in this case partitions Pt1
and Pt16), the non-skyline points contained in Partition
Pt16 will be pruned with high probability. Therefore,
we could use this heuristic-based partitioning to cluster
different partitions into separate groups such that each
group contains similar amount of skyline points, as
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Algorithm 1 Heuristic Partition-Grouping

Input: P̌ : sample data, M̂ : number of groups, δ: partition
expansion factor

Output: PGmap: hashmap from partition ID to group ID
1: Pt← PZORDER(P̌ , M̂ ∗ δ)
2: Ss ← computeSkyline(P̌ );
3: Pt← redistribute(Pt, Š);
4: Pt ← sort(Pt); //sort partitions via skyline points dis-

tribution
5: m← 0;
6: tcons← |P |/M̂ ; //constraint 1
7: scons← |Ss|/M̂ ; //constraint 2
8: hptr ← head(Pt);
9: tptr ← tail(Pt);

10: initialize PGmap, tcount, scount by hptr’s content
11: while (hptr! = tptr) do
12: scount← scount+ tptr.sc; //update skyline count
13: tcount← tcount+ tptr.tc; //update points count
14: PGmap.put(tptr.pid,m);
15: tptr ← tptr.previous;
16: if (scount > scons or tcount > tcons ) then
17: m← m+ 1;
18: hptr ← hptr.next;
19: initialize Gm, scount, tcount by hptr info
20: end if
21: end while
22: return PGmap

well as equal amount of data points. The following
proposition describes this formally.

Proposition 1: Given a partition set Pt and a group set
G, let |Ptsi| be the number of skyline points belonging
to partition Pti, the necessary condition that a partition
Pti is joined into group Gm is that (1) the variance of
the skyline distribution among groups,

∑M̂
m=1(|Gsm| −

|S|/M̂)2, is minimized, where |Gsm| =
∑m′

i=1 |Ptsi|, M̂
and |S| are the number of groups and the number of
skyline points, respectively, and (2) the variance of the
number of points among groups,

∑M̂
m=1(|Gm|−|P |/M̂)2,

is also minimized, where |Gm| =
∑m′

i=1 |Pti|.
Heuristic Partition-Grouping. Algorithm 1 shows the

pseudo-code of the heuristic for merging partitions into
different groups, which proceeds as follows. First, to
approximately compute the skyline distribution, a sam-
ple dataset is collected from dataset P using reservoir
sampling [23]. The sample dataset P̌ is divided into
several partitions (i.e., M̂ ∗ δ, such that each partition
has the same number of input data points. Note that δ
is the partition expansion factor and is bigger than one)
in order to get more partitions to merge into groups. The
corresponding skyline for the sample data P̌ is Š.

Next, Procedure computeSkyline (Line 2) computes
the skyline set from the sample data P̌ , and the num-
ber of skyline points in each partition is computed.
As mentioned earlier, the goal is to group different
partitions together such that each group contains ap-
proximately an equal amount of skyline points. Thus,
partitions with more skyline points (i.e., bigger than
|Š|/|M̂ |), are further divided into separate partitions
via Procedure redistribute (Line 3). Note that Pro-

cedure redistribute is called such that the greedy
merging procedure can work. For example, if the size of
the skyline for Partition Pti is bigger than |Š|/|M̂ |, then
Partition Pt1 in Figure 4(a) is divided into Partition
Pt′1 and Pt′′1 in Figure 4(b). In our implementation,
Procedure redistribute re-partitions one partition
based on the sampled skyline distribution in the space,
that is, one partition is further divided into partitions
such that each partition has a similar amount of sample
skyline points.

Then, these further split partitions are sorted de-
creasingly based on the number of skyline points, i.e.,
|Ptsi| (Line 4). To approximately minimize the variance
(Proposition 1), the upper bounds of the number of
skyline points and data points, say scons and tcons,
are set for each group (Lines 6-7), respectively. Finally,
all partitions are scanned until each one is properly
assigned to a certain Group Gm, i.e., if either (a) the
number of skyline point or (b) the number of data
points in Group Gm is beyond the upper bound. If any
constraint is not satisfied, a new group is generated (Line
17).

Discussion One issue with the proposed Heuristic
Partition-Grouping is that it fails to avoid redundant
skyline computation in certain cases. For example, in
Figure 4 (c), this heuristic merges Partitions Pt2 and
Pt3 together. However, after this grouping, the domi-
nance testing for data points in these two partitions is
wasted, because data points in the corresponding data
partition have no dominance relationship. Furthermore,
skyline distribution from the sample dataset is only an
approximation of its distribution over the whole dataset.
Heuristic Grouping tries to equally distribute sample
skyline points in each group. However, the sample may
not perfectly reflect the actual distribution and some
groups may receive much more skyline points than
others. In the next section, we propose several techniques
to mitigate these issues.

4.3 Dominance-based Partition Grouping

Dominance-based Grouping is developed via the dom-
inance relationships between various partitions. Given
partition Pti with two pivots, say [θ(Pvm), θ(Pvm+1)),
we first compute the maxpt(Pti) and minpt(Pti) of
partition Pti from θ(Pvm) and θ(Pvm+1), as illustrated
in Definition 3. Let P̂ ti be the RZ-region of partition
Pti. The pivot values of partition Pti belong to the
interval between the min point and the max point
of the partition’s RZ-region, i.e., [θ(Pvm), θ(Pvm+1)) ⊆
[maxpt(Pti),minpt(Pti)). Then, we can obtain RZ-
region’s dominance relationships from Lemma 1. Parti-
tion Pti can be pruned if P̂ ti is dominated by another
partition’s RZ-region P̂ tj . For example, partition Pt5 in
Figure 4(c) can be pruned, since P̂ t1 ` P̂ t5.

In addition, data partitions can be grouped according
to case 3 of Lemma 1, e.g., some points of Partition Ptj
can be dominated by points in partition Pti. Suppose
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Algorithm 2 Dominance-based Partition-Grouping

Input: P̌ : sample data, M̂ : number of groups, δ: partition
expanding factor

Output: PGmap:hashmap between Partition ID and Group ID
1: Pt← PZORDER(P̌ , M̂ ∗ δ)
2: Ss ← computeSkyline(P̌ );
3: DM ← dominate(Pt); //dominate matrix
4: Pt ← redistribute(Ss,Pt);
5: m← 0;
6: tcons← |P |/M̂ ; // constraint 1
7: scons← |Ss|/M̂ ; // constraint 2
8: sort(Pt, DM );
9: Initialize group G0 by the first partition of Pt

10: while (Pt is not empty) do
11: if (tcount > tcons or scount > scons) then
12: m← m+ 1;
13: hptr ← hptr.next ;
14: initialize tcount, scount
15: end if
16: Pt′i ← MaxDominate(Gm, P t, DM );
17: remove Pt′i from Pt;
18: put Pt′i into Gm;
19: scount← scount+ |Pts′i|;
20: tcount← tcount+ |Pt′i|
21: PGmap.put(Pt′i.pid,m);
22: end while
23: return PGmap
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volume

that the number of data points in P̂ tj can be estimated,
then partition Pti and Ptj can be grouped together, if
the estimated data to be pruned is large. This results in
a high possibility of reducing redundant skyline compu-
tation.

Example 3: Consider the three partitions Pt1, Pt3 and
Pt4 in Figure 4(c), we want to put these partitions into
two groups (say, G1 and G2). Note that partition Pt1
dominates regions of partitions Pt3 and Pt4, and these
two regions are illustrated in red-shaded color, namely
DR1 and DR2. The area of DR1 is bigger than that of
DR2 indicating that more points in partition Pt4 are
likely to be dominated by points in partition Pt1. Thus,
it is more reasonable to merge partitions Pt1 and Pt4
into group G1, rather than grouping partitions Pt1 and
Pt3 together.

Motivated by the above observation, the dominance
volume is defined as the RZ-region area of partition
Ptj , which is partially dominated by the max point of

partition Pti’s RZ-region.
Given the RZ-regions of two partitions P̂ ti and

P̂ tj s.t. P̂ ti |` P̂ tj and i 6= j. Four Z-
address values are computed, namely maxpt(P̂ ti),
minpt(P̂ ti), maxpt(P̂ tj), and minpt(P̂ tj). These four Z-
address values can be transformed back to the orig-
inal k-dimensional points. For each dimension k ∈
{1, 2, . . . , d}, a set Xk is used to hold the point coordi-
nates, Xk = {minpti[k],maxpti[k],minptj [k],maxptj [k]},
where minpti[k] denotes the value of minpt(P̂ ti) on the
k-th dimension. Let X`

k denote the largest element of Xk

and Xs
k denote the second largest element of Xk.

Definition 5: The dominance volume is defined as

Vdom(P̂ ti, P̂ tj) =

∫ X`
1

Xs
1

· · ·
∫ X`

d

Xs
d

dt1 · · · dtd.

According to the definition, the dominance volume is
commutative, i.e., Vdom(P̂ ti, P̂ tj) = Vdom(P̂ tj , P̂ ti) and
Vdom(P̂ ti, P̂ ti) = 0.

Lemma 2: If Vdom(P̂ ti, P̂ tj) > Vdom(P̂ ti, ˆPtk), then the
possibility that the points in partition Ptj(or Pti) can be
dominated by partition Pti(or Ptj) is higher than the
possibility that the points in partition Ptk(or Pti) can be
dominated by possibility Pti(or Ptk).

Proof: This can be proved by the definition of dom-
inance volume. Refer to Figure 4(c) and Example 3,
Vdom(Pt1, P t3) and Vdom(Pt1, P t4) is the area for region
DR1 and DR2, respectively.

Based on the dominance volume for partitions, the
optimal partition-grouping approach needs to merge
partitions such that partitions in the same group have
larger dominance volume between each other than any
other partition outside the group. At the same time,
similar to the grouping heuristic strategy, for a group,
say Gm, the corresponding partition size cannot exceed
the average partition size, i.e., tcons = |P |/M̂ and the
number of skyline points contained in this group cannot
exceed the average skyline size, i.e., scons = |S|/M̂ .
Therefore, the objective function for dominance based
partition-grouping is formalized as follows,

maximize
M̂∑

m=1

∑
Pti,P tj∈Gm

Vdom(P̂ ti, P̂ tj)

subject to Gm ∩Gn = ∅,
M̂⋃
k=1

Gk = P,m 6= n,∑
Pti∈Gm

|Pti| ≤ |P |/M̂.∑
Pti∈Gm

|Ptsi| ≤ |S|/M̂,

The difficulty of the above optimization problem is
that the number of skyline points |S| cannot be accu-
rately estimated. We use the sample skyline size |Š| to
approximate the true skyline size |S|. In order to obtain
an approximately optimal grouping for maximizing the
above objective function, we adopt a greedy approach.
First, we define dominance matrix and dominance power.
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Definition 6: Given a partition set Pt with M parti-
tions, the dominance matrix, denoted as DM , is defined
as follows:

DM [i][j] = Vdom(P̂ ti, P̂ tj), and i, j ∈ {1, ...,M}.
Definition 7: For a partition Pti, its dominance power

Γ(Pti), is the sum of all the dominance volumes between
Pti and other partitions, i.e.,

Γ(Pti) =
∑

Ptj∈Pt,j 6=i

Vdom(P̂ ti, P̂ tj) =

M∑
j=1

DM [i][j].

Figure4(c) shows that DM [1][] = [0, 0, Sa, Sb, Sc],
where Sa and Sb are the areas of DR2 and DR1 cor-
respondingly, and Sc is the area of RZ-region of Pt5.
Partition Pt1 has a larger dominance power than other
partitions. We adopt a greedy search strategy to maxi-
mize the objective function based on the following proce-
dure: (1) remove the partition with the largest dominance
power (say, Pti) from Pt, and place Pti in a group
(say, Gm), (2) choose another partition whose dominance
volume with Gm is maximal, i.e.,

Pt′i = argmax
Ptj∈Pt,P tj 6∈Gm

∑
Pti∈Gm

Vdom(P̂ ti, P̂ tj).

(3) repeat step (1) and (2) until the constraint for group
Gm is satisfied. The procedure continues for the next
group.

Algorithm 2 shows the details of the Dominance
Grouping procedure. Before merging different parti-
tions, partition preprocessing steps are introduced be-
low. The sample data partition is computed as in
Algorithm 1. procedure dominate() (Line 3) com-
putes the dominance relationships among partitions and
builds the dominance table DM . The running time
complexity is O((|M̂ |δ)2), which is affordable since
M̂δ = |Pt| is usually small (about 1k). Next, pro-
cedure redistribute() (Line 4) removes the domi-
nated partitions, and also splits the partitions that have
more skyline (i.e., |Ptsi| > |Š|/M̂ ). Next, procedure
sort() sorts the partitions in descending order ac-
cording to their dominance power and the number of
skyline points (i.e., |Ptsi| ∗ Γ(Pti)) (Line 7). Then pro-
cedure maxDominate() finds the partition (i.e., Pt′i)
whose dominance volume Pti ∈ Gm is maximal. Then,
partition Pt′i is removed from the partition set Pt and
put into current group Gm (Line 19-21). Meanwhile,
group Gm is updated (Lines 20-22). Algorithm 2 is
repeated until group Gm is beyond its capacity. A new
group G′m is created. After each partition is assigned to
one group, Algorithm 2 stops and returns the mapping
rule between partitions and groups PGmap.

Example 4: We use data partitions in Figure 4 to il-
lustrate Algorithm 2. To merge partitions, the algorithm
initially chooses partition Pt1 and assigns it to an empty
group G0. Then partition Pt1 is removed from the
data partition set and put into group G0. Next, proce-
dure maxDominate() chooses partition Pt4 and adds
Pt4 to G0, because dominance volume Vdom(P̂ t1, P̂ t4) is
the largest. After Pt4 is added to group G0, G0 no long
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satisfies the constraint that the group size is smaller than
|P |/M̂ . So a new group G1 is created and Pt2 is assigned
to G1. This procedure continues until each partition is
properly assigned.

5 PARALLEL SKYLINE QUERY PROCESSING

In this section, we show how we implemented our
proposed skyline query processing using MapReduce
(Figure 5).

Algorithm 3 1st MapReduce Job

1: function MAP(k1, v1)
2: SZB-tree←buildZBtree(Š);
3: if not Dominate(v1, SZB-tree) then
4: zaddress← zaddress(v1);
5: pid ← searchPT(zaddress, Pv); //binary search

Partition ID
6: gid← PGmap.get(pid); // get group ID
7: if m is not NULL then
8: output(gid, v1);
9: end if

10: end if
11: end function
12:
13: function REDUCER(k2, v2)
14: ZB-tree ← compute skyline via Z-search
15: output(ZB-tree);
16: end function

5.1 Preprocessing for Data Partitioning
As introduced in Section 4, the data preprocessing is
invoked at the master node for selecting a set of sample
data using reservoir sampling [23]. After the sampling
step, we adopt the data partition-grouping strategies in
Algorithm 1 and Algorithm 2 to learn a data partitioning
policy. Finally, the data preprocessing step outputs the
data partition-grouping rules.

5.2 Compute Skyline Candidates
Algorithm 3 shows the pseudo-code of the first MapRe-
duce job. Specifically, before launching a map function,
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the partitioning pivot set Pv, sample data skyline Š,
and partition-grouping rule ( e.g., PGmap), are loaded
into the main memory of each mapper by using the
distributed cache of Hadoop. Notice that a ZB-tree, say
SZB-tree, is built for the sample data skyline Š. Then
the dominance testing between SZB-tree and input data
points is carried out, which enhances the naı̈ve all-pairs
dominance testing to filter out non-skyline data points
in the mapper. The qualifying tuples are mapped from
a partition ID pid to a valid group ID gid, and the
key-value pairs (gid, v1) are output (Line 8). Between
a mapper and a reducer, a combiner computes skylines
on the mapper side by executing a skyline algorithm
for data points in the same group, and outputs skyline
candidates locally. In this way, the combiner filters out
non-skyline tuples and reduces the shuffling cost. Next,
reducers are launched after all mappers and combiners
finish. Finally, skyline candidates are computed and
output to the distributed file system.

5.3 Merge Skyline Candidates
The second MapReduce Job performs the skyline can-
didate merging. The main task of a mapper in the sec-
ond MapReduce job is to shuffle the skyline candidates
into a reducer, and the reducer performs the skyline
merging based on the tree-based approach introduced
below. Tree-based skyline computation is driven from
the following observations. Skyline candidates are stored
as a tree structure i.e., a ZB-tree. Merging indices of
skyline candidates can reduce the pair-wise computation
for incomparable skyline points. Thus, we propose the
tree-based based skyline candidate merging algorithm
Z-merge, which is described below.

Algorithm 4 shows the details on how to merge two
ZB-trees, say Zsrc and Zsky, where Zsrc represents
new coming data points, and Zsky corresponds to the
existing skyline set. Algorithm Z-merge traverses ZB-
tree Zsrc in breadth-first search order (short as BFS).
BFS starts from the head of queue. In each step, a Node
n, is retrieved from the head of queue.

Procedure UDominate() performs dominance testing
between node n and ZB-tree Zsky (Line 6) as in [5].
According to the dominance relationship, if node n dom-
inates node n’ in ZB-tree Zsky, then node n’ is removed
from the ZB-tree Zsky by procedure UDominate().

A non-leaf node of a ZB-tree is essentially an RZ-
region R encoded by minpt(R) and maxpt(R) of the re-
gion. Next, if ZB-tree Zsky dominates bode (n.minpt,
n.maxpt), the children nodes of node n are discarded.
If ZB-tree Zsky is incomparable with node (n.minpt,
n.maxpt), Z-merge, the algorithm inserts node n into
dominate-branches (Lines 9-10), and merges the sub-
tree of node n with Zsky (Lines 25-26). For the third
case, if node n is not a leaf node, the children nodes
of node n are inserted into queue (Lines 12-15). On the
other hand, if node n is a leaf node, a dominance testing
is carried out between the related value of node n and
ZB-tree Zsky (Lines 16-20).

Algorithm 4 Z-merge

Input: Zbsrc: ZB-tree for the source data, Zsky: ZB-tree for
the skyline

Output: Zsky: ZB-tree by merging the skyline of source data
1: queue← empty
2: queue.enqueue(Zbsrc.root);
3: var dominate-branches;
4: while (queue is not empty) do
5: node n← queue.dequeue();
6: drl← UDominate(Zsky, n.minpt, n.maxpt))
7: if Zsky dominate (n.minpt, n.maxpt) then //case 1
8: continue;
9: else if (Zsky incomparable (n.minpt, n.maxpt)) then

10: dominate-branchs.add(n); //case 2
11: else//case 3
12: if (n is not leaf node) then
13: for (each children n′ of node n) do
14: queue.enqueue(n′); //searching on children
15: end for
16: else
17: for (each children p for node n) do
18: if (Zsky not dominate p) then
19: insert p into Zsky //p is a skyline point
20: end if
21: end for
22: end if
23: end if
24: end while
25: for (each node n′ in dominate-branches) do
26: append(n′, Zsky)
27: end for
28: balanceZbtree(Zsky);
29: return Zsky
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Fig. 6: Merge the ZB-tree of Existing Skyline Points with
New Input Data

After traversing ZB-tree Zsrc, the sub-ZB-tree in
dominate-braches is appended to ZB-tree Zsky
(Lines 25-27), and ZB-tree Zsky is balanced again (Line
28).

Example 5: Figure 6 shows an example of merging
source data ZB-tree Zsrc with an existing skyline set
ZB-tree Zsky. The root node of Zsrc, denoted as {[p1,
p3] [p5, p9]}, represents the region R2 in Figure 6. By
evaluating the minimum point and maximum point of
regions R2 and R1, node {[p1, p3] [p5, p9]} cannot be
dominated by ZB-tree Zsky. Thus, we put those children
nodes {[p1, p2] [p3, p3]}, { [p5, p6] [p7, p9]} of node {[p1,
p3] [p5, p9]} into the queue. For the children node {[p1,
p2] [p3, p3]} and its corresponding region R21, we can
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observe that region R12 dominates part of the points in
region R21, similar to the third region dominate case
as introduced in Algorithm 4. Thus, this invokes the
dominate test among the leaf nodes, i.e., {p1, p2}, {[p3,
p3]} with region R12. As a result, points p1 and p2 are
removed from the skyline set, while point p3 remains. On
the other hand, node {[p5, p6] [p7, p9]} is incomparable
with Zsky. Finally, Zsky’ is the final merged ZB-tree
for the skyline points.

5.4 Discussion

Analysis of Data Pruning
We analyze the amount of data that could be pruned

by the dominance-based partition-grouping approach.
We focus on the potential number of data points to
be pruned, because it directly impacts the whole query
processing time, i.e., the more points are pruned, the less
disk overhead and network communication are incurred
to store redundant non-skyline data points, and the less
computation time it takes to merge skyline candidates,
the shorter skyline query processing time is needed.
Notice that the number of partitions M mentioned below
is the number of groups, which is referred to as M̂ in
the previous section. It is almost impossible to compute
the exact number of data points to be pruned, since the
number of skyline points depends on data distribution,
and skyline distribution is hard to estimate accurately in
high dimensional space [5]. We define the total dominance
volume to approximate the number of points that can be
pruned during the computation.

The total dominance volume is defined as
Vt = Va − Vo,

Va =

M∑
i

M∑
j

Vdom(P̂i, P̂j),

Vo =

M∑
i

M∑
j

M∑
k

Vdom(P̂j , P̂k),∀i, j,maxpt(P̂i) ` maxpt(P̂j),

where Va is the total dominance volume with overlap-
ping areas, Vo is the overlapping volumes. Thus, the
total number of pruned points is Nt = ρ̄Vt, where ρ̄
is the average density of points in the space. To esti-
mate the cost of skyline query processing, we need to
consider various data distributions, i.e., correlated, anti-
correlated, and independent. Our focus is the number of
data points that can be pruned by the first MapReduce
job. Let np be the number of data points pruned during
the first MapReduce job.

For independent data distribution, we estimate the
density of data points in the d-dimensional space. Let
Zi = {p1[i], . . . , pn[i]}, where pk[i] is the value of i-th
dimension of point pk. Thus, the total volume of the
whole dataset can be computed as

Q =

∫ max(Z1)

min(Z1)

· · ·
∫ max(Zd)

min(Zd)

dt1 · · · dtd.

Since data is independently distributed, np = nVt/Q.

For correlated data distribution, the first MapReduce
job divides the whole dataset into M partitions. Consider
the case that there is only one skyline point in each
partition. This indicates there are only M skyline candi-
dates for the second MapReduce job. Thus, the number
of pruned data points is np = n−M .

For the anti-correlated data distribution, we consider
two extreme cases. The first case is that every data point
is a skyline. This indicates that the first MapReduce job
outputs the same data points as the input, which means
np = 0. For the other extreme, each partition has exactly
one skyline. Therefore, the first MapReduce Job outputs
M skyline candidates, which means np = n−M .

Finally, it might be that the resulting overestimate of
total dominance volume is not as significant in practice,
as the error applies to estimates for all groupings (with
or without the removal of some overlap) - e.g. if the
error were always a constant factor, Algorithm 1 would
be unaffected (beta would simply grow by the same
constant factor).

Runtime Analysis of Z-merge
With the number of pruned data points, we discuss

the processing time of Z-merge. Let |n̂|, d, |S| be the
number of skyline candidates, the data dimensionality
and the size of the skyline, respectively, where n̂ = n−np.
Based on the dominance based grouping strategy, we
assume skyline candidates distribute uniformly in each
data Group Gm, and denote this number as |n̂|/M . The
processing time of Z-merge depends on the overhead of
the procedure UDominate(), i.e., the height of the ZB-
tree of existing skyline points [5], which is O(logd |S|),
and the number of times procedure UDominate() is
invoked.

We analyze the processing time w.r.t different data
distributions. For independent and anti-correlated data
distributions, most of the data points cannot be dom-
inated by others. We consider the worst case scenario
where all skyline candidates are parts of the skyline
points, i.e., S = n̂. Therefore, the number of times
procedure UDominate() is invoked is the same as the
number of internal nodes of Zsrc, i.e., O(|n̂|/M), and
the overhead of procedure UDominate() is O(d logd |n̂|)
for d-dimensional data. Thus, the running time to merge
all ZB-trees is O(|n̂|d logd |n̂|). For correlated data distri-
bution, the size of the skyline is small. Suppose each
partition outputs one skyline point, and the size of the
skyline is |S| = M . The overhead of UDominate() is
O(d logdM), so the processing time is O(Md logdM), this
save the computation cost to merge skyline candidates
while pruning some branches of built index.

6 EXPERIMENTAL STUDY

6.1 Experimental Setup

Datasets.
We evaluate the performance of the proposed tech-

niques using the following two types of datasets. The
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first type is synthetic data, e.g., independent, anti-
correlated and correlated distributed data, that is widely
used in the literature ([8], [9], [11], [12]). In our exper-
iments, we vary the data size from 10 million to 110
million, and the data dimensions from 2 to 10. We only
show the results for the independent and anti-correlated
cases, because results for correlated data exhibit similar
trends to the anti-correlated case. We also use three real-
world high dimensional datasets [24]: (1) NUS-WIDE2 is
a web image dataset containing 269,648 images. We use
225-D block-wise color moments as the image features,
thus obtaining a 225-dimensional data. (2) Flickr3 is a
an image hosting website. We crawled 1 million images
and extracted 512 features via the GIST Descriptor [25]
(the number of data dimensions is 512). (3) DBPedia4

data aims to extract structured content from Wikipedia.
We extracted 1 million documents, and then applied
standard NLP techniques to pre-process the documents,
e.g., to remove stop words. We use the Latent Dirichlet
Allocation (LDA) model to extract topics, and we keep
250 topics for each document. To evaluate the perfor-
mance on larger data sizes, we synthetically generate
more data while maintaining the same distribution as the
original data distribution, e.g., as in [26], [24]. We use ×s
to denote the increase in dataset size, where s ∈ [5, 25]
is the increase or scale factor.

Computing Platform. We use a Hadoop cluster con-
sisting of 6 computing nodes (namely Hathi5). Each node
has an Intel(R) Xeon (R) E5640 2.66 GHz 4-core pro-
cessor, 32GB of memory. Each node runs Ubuntu 14.04
operating system, Java 1.6.0 with a 64-bit sever VM, and
Hadoop 2.4. Meanwhile, we setup one Hadoop cluster
(version 2.6) based on the the Amazon EC2 with 48
nodes, each node has an Intel Xeon E5-2666 v3 (Haswell)
and 8GB of memory. The performance testing for the
synthetic datasets (e.g., independent, anti-independent
and correlated data distribution) is carried on Hathi,
while the experimental study for real-world datasets, i.e.,
NUS-WIDE, Flickr and DBpedia datasets is carried out
on the Amazon EC2.

Evaluated Approaches. We evaluate the following
data partitioning approaches:

Grid-based partitioning [9], [11]. In particular, we nor-
malize the value of each data point by the projection-
based method in [7].

Angle-based partitioning [8]. We implemented this dy-
namic partitioning approach to learn a data partitioning
rule such that each partition has the same amount of
input data points.

MR-GPMRS [12]. This is the latest MapReduce skyline
computing approach based on grid partitioning and bit-
string. It uses multiple reducers to compute global sky-
line from skyline candidates. We use the implementation
generously provided by the authors.

2. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3. htttp://www.flickr.com
4. http://wiki.dbpedia.org/About
5. https://www.rcac.purdue.edu/compute/hathi/

Z-order curve based partition and grouping. This is our
approach introduced in Section 4. We implement three
strategies: (1) Naı̈ve-Z: Z-order data partitioning in Sec-
tion 4.1; (2) ZHG: Z-order based partition+Heuristic
Grouping in Section 4.2; (3) ZDG: Z-order based
partition+Dominance-based Grouping in Section 4.3.

For each partitioning approach, we adopt two cen-
tralized skyline computation algorithms. The first one
is sorting the data first, then computing the skyline via
the Block-Nest-Loop [1] (short as SB). The second one is
the state-of-the-art centralized skyline algorithm called
Z-search [5] (short as ZS). Based on the data partitioning
approaches and the skyline computation algorithm, we
ended up with several computation strategies. For ex-
ample, Grid+SB and Grid+ZS means grid partitioning
data, then SB and ZS are applied for each data partition,
respectively. Similarly, Angle+SB and Angle+ZS follow
the same way of definition. In addition, ZDG+ZS means
ZDG divides the dataset into different partitions, then
ZS algorithm is used to compute skyline candidates in
each reducer. We denote by ZM the Z-merge algorithm
developed in Section 5 to merge the skyline candidates.
We also compare the runtime performance of Z-merge
against ZS when merging the skyline candidate, where
ZDG+ZS means that ZS is used to merge skyline can-
didates in the third stage.

In order to reduce the shuffling cost between the
mappers and the reducers, all the approaches use the
same combiners to compute skyline candidates. We mea-
sure several parameters, including the query processing
time, the number of skyline candidates and the number
of partitions. The query processing time includes the
data preprocessing time (i.e., time to learn the data
partitioning rule from the sampling data), launching
the job, network communication, computation time and
results writing to the distributed file system (HDFS).
For each data partitioning mechanism, i.e., Grid, Angle
and Z-order based, the same amount of sample data is
collected.

6.2 Effect of Load Balancing

Figures 7a and 7b show the execution time as the dataset
size increases (from 10 million to 110 million) for the
synthetic dataset, where the data dimensionality is 5,
and the number of data partitions is fixed to 32. The
plotted lines with the same color use the same cen-
tralized skyline algorithm. When the skyline algorithm
SB is applied, ZDG performs better than the other two
partitioning approaches, but the improvement is not
significant. The reason is that SB performs pair-wise
dominance testing for incomparable data points, and the
runtime time of skyline computation becomes the bot-
tleneck of the MapReduce Job. Therefore, to clearly un-
derstand how the partitioning approach influences load
balance, the state-of-art skyline computation algorithm
ZS is adopted. ZS indexes incomparable data points into
different RZ-regions, and reduces the dominance testing
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Fig. 7: Effect of load balancing by changing data cardinality and dimensions
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Fig. 8: Effect of data pruning by changing data cardinality and dimensions

among data points. Its performance is bound by the
number of input data points and skyline candidates. We
observe ZDG+ZS achieves more than 5 times speedup
against the other two partitioning approaches. The rea-
son is that ZDG guarantees that each reducer performs
the computation on a similar amount of dataset points,
and receives a similar amount of skyline points.

Figures 7c and 7d plot the response time by varying
data dimensionality from 2 to 10 for independent and
anti-correlated data, when the number of data points
is fixed as 50 million. As observed in the figure, Grid-
based and Angle-based partitioning approaches show
similar performance for lower number of dimensions.
However, the execution time increases exponentially
when the dimension varies from 5 to 10, which is due to
the curse of dimensionality and both data partitioning
approaches fail to guarantee that each partition is allo-
cated the same amount of input dataset. However, the
execution time of ZDG grows smoothly when the data
dimensionality varies from 5 to 10, and it gains 5 times
speedup against the other two methods (i.e., Grid-based
and Angle-based). This confirms our discussion that
data partition-grouping algorithm ZDG can efficiently
filter out non-skyline data points by merging different
partitions, and those partitions merged into the same
group stand higher possibility to dominate each other.
This dominance comparison is based on the Z-address
of data, which is not sensitive to data dimensionality.
Furthermore, for the same data partitioning approach,
ZS algorithm shows the best performance, when the data
has higher dimensions (i.e., larger than 7). However, it is
slightly slower than SB for lower number of dimensions,
because of the overhead of managing the ZB-trees.

From the results in Figure 7, we also notice that
the Angle-based partitioning method does not always

(a) Independent (b) Anti-correlated

Fig. 9: Effect of pruning: skyline candidates w.r.t data
size

perform better than the Grid-based partitioning method,
because the Angle-based method is sensitive to the
spatial distribution of skyline points. When the data size
increases, the runtime of Angle+SB degrades more than
that of Grid-based and Z-order-based approaches. This
reflects the fact that skyline points do not stay near the
origin of axes in high-dimensional spaces for uniform
distribution.

6.3 Effect of Data Pruning
Figure 9 shows the number of skyline candidates for
the different approaches. For ZDG, our proposed data
partition grouping rule allows each reducer to filter
out skyline candidates based on the dominance rela-
tionship. Thus, ZDG gains more than 5 and 3 times
of pruning ability than Grid-based and Angle-based
methods, respectively. The power of data pruning can
also be observed from the running time to merge skyline
candidates. Naturally, the more skyline candidates, the
more time it takes to compute the skyline. Figure 8a
and Figure 8b show the corresponding running time to
merge skyline candidates as the dataset size increases
(i.e., from 20 million to 110 million). ZDG+ZM al-
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ways shows the best performance, followed by Angle-
based and Gird-based methods. To test the effect of
dimensionality on performance of computing skyline
candidate, we illustrate the results in Figure 8c and
Figure 8d. For Grid- and Angle-based approaches, when
the number of dimensions increases, the running time
increases quadratically. However, for ZDG+ZM, when
the number of dimension varies from 4 to 10, the running
time increases smoothly because the Z-order curve maps
data into one dimension, and the skyline computation
algorithm does not depend on the data dimensionality.

From Figure 8, we observe that the proposed Z-merge
approach improves the final skyline computation, as the
number of input data points and data dimensionality in-
crease. As shown in Figure 8a and Figure 8b, the running
time of ZM method is always shorter than that of SB by
more than 10 times. This is determined by the fact that
merging the index is more efficient than searching the
skyline set from skyline candidates based on the sorting
approach. From Figure 8c and Figure 8d, we also observe
that ZM always outperforms SB as the number of data
dimensions increases. Finally, the newly proposed Z-
merge achieves one order of magnitude speedup against
Z-search for merging the skyline candidates, since Z-
merge utilize multiple indexes to reduce the all-pairs
comparison testing in the Z-search algorithm.

6.4 Effect of Grouping Strategy

Figure 11 shows the response time w.r.t the number of
data partitions. Note that the number of reducers is set
to be the number of data partitions, the dataset size
is 60 millions with 6 dimensions, and the number of
partitions for ZHG and ZDG approaches is the num-
ber of groups. Angle-based and Grid-based partitioning
methods spend less time as the number of partitions in-
creases, and remain stable when the number of partitions
is greater than 32. The running time of Naı̈ve-Z grows
quickly once the number of partitions is greater than
32. This is attributed to the fact that the Z-order curve
would cluster data points with higher similarity into one
partition, and the possibility that data points dominate
each other is low, leading to a larger number of sky-
line candidates and degrading the runtime performance.
However, ZDG obtains stable runtime performance as
the number of partitions increases, because dominance
based partition grouping can merge different partitions
into groups based on their dominance relationship rather
than the similarity of data points.

We also measure the effect of data size on the shuffling
cost. Figure 10 gives the data shuffle costs when the
data size varies. The smaller the shuffle costs, the better
the performance is. We observe that the shuffle costs for
Angle and Grid based data partition, are 10 times bigger
when compared to the Z-order based approaches (e.g.,
ZHG and ZDG). The reason is that the dominance based
partition technique groups data points based on their
dominance relationship, hence, more redundant interme-
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Fig. 10: Shuffle cost of parallel skyline query processing

(a) Independent (b) Anti-correlated

Fig. 11: Response time against the number partitions

diate data are pruned. Notice that the data shuffling cost
for PGBJ increases linearly with the data size.

6.5 Scalability
We now investigate the scalability for four approaches
on the synthetic data and real-world dataset. Figure 12
presents the results by varying the data sizes from 2 mil-
lion to 30 million. We only show the results of Z-search
for local skyline computation, since it outperforms the
sort based approach as presented in Section 6.2. Mean-
while, the experimental results for anti-distribution show
the similar trend as the independent distribution, we
omitted it here. From Figure 12, we see that the overall
execution time of all the three existing approaches (i.e.,
Grid, Angle and MR-GPMRS) grow quadratically when
the data size increases. This is determined by the fact
that the number of incomparable data points increases
quadratically with the data size, and existing approaches
cannot prune skyline candidates effectively. However,
the response time of ZDG+ZM increases smoothly as the
dataset size increases. For instance, ZDG+ZM achieve 5,
8, 10 times speedup against MR-GPMRS, Angle+ZS and
Grid-ZS, respectively. This is attribute from the facts z-
order based partition grouping is able to partition the
high dimensional data in a balanced way.

6.6 Effect of Data Sampling
We now study how data sampling influences the num-
ber of skyline candidates and query processing time.
Figure 13 presents the results by varying sampling ra-
tio from 0.5% to 4% on the dataset with independent
distribution. We observe that ZDG always performs
best on the number of skyline candidates and skyline
query processing time, followed by ZHG and Naı̈ve-
Z. The skyline candidates can be pruned more as the
sampling percentage increases for all three Z-order based
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Fig. 12: Speedup and scalability: Running time of Parallel Skyline Query Processing.

0.5 1 1.5 2 2.5 3 3.5 4

2.5

3

3.5

4

4.5

x 10
4

Sampling Percentage(%)

#
 S

k
y

li
n

e 
C

an
d

id
at

s

 

 

Naive-Z

ZHG

ZDG

(a) Skyline Candidates

0.5 1 1.5 2 2.5 3 3.5 4
500

600

700

800

900

1000

1100

1200

1300

Sampling Percentage(%)

R
es

p
o

n
se

 T
im

e(
S

ec
o

n
d

s)

 

 

Naive-Z+ZS+ZM

ZHG+ZS+ZM

ZDG+ZS+ZM

(b) Running Time
Fig. 13: Effect of sampling w.r.t skyline candidates and
execution time

partitioning approaches. Because the approach ZHG and
Naive-Z are more sensitive to sampling data sizes, their
runtime performance is impacted more by the number
of sampling data. However, ZDG behavior more stable,
since it depends on the dominance-volume, which is not
influenced by data sampling. In the experiment, we find
that the ZDG spends longer time on learning the data
partitioning rule. For example, when the sample ratio
is 0.5%, the Naı̈ve-Z, ZHG and ZDG takes 60, 120, 150
seconds for data preprocessing, respectively. Although
ZDG incurs higher preprocessing time than the other
two approaches, ZDG achieves the best skyline query
processing time, since the rumtime of data preprocessing
is circumvented by gains in the runtime of stage 2 and
4, i.e., computing skyline candidates in parallel and the
final skyline candidates merging.

7 CONCLUSION

This paper demonstrates an efficient solution for the
problem of parallel skyline query processing. Extensive
experiments on a Hadoop cluster demonstrates that our
proposed method is efficient, robust, scalable and can
achieve up to one order of magnitude speedup over
existing state-of-the-art approaches.
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