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Why is it Important? 

• Content-based similarity search 

– Image, Text,  Video, Fingerprint 

– Similarity search for the transformed high 
dimensional vector 

• Query: 

Find similar Images  

to a query image from  
an image collection 
(J. Leskovec et al. 2013) 
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Some Preliminaries (1/3) 

• Similarity Preserving Hashing is widely used for approximate 
near neighbor(NN) search 
 Data independent similarity hashing (LSH) 

 Data-dependent similarity hashing  

• Core operation of  data-dependent similarity hashing is 
Hamming distance range query 

     (Wujun et al. 2013)  
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Step1: Hashing data to binary 

Step2: Hamming-select 



Preliminaries (2/3) 

• Hamming Distance: 

– between two strings of equal length is the number 
of positions at which the corresponding symbols 
are different 

• Example 

– String: “abcdd” and “cbcaa” is 3 

– Binary codes: 1011101 and 1001001 is 2 
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Preliminaries (3/3) 

• Hamming-select 
– Return tuples from a dataset, where the Hamming distance to a point 

query is not bigger than a predefined threshold H 

– Given threshold H=3 and Q=101100010  

– Hamming-select 

– (Q, S)={t0, t3, t4, t6} 

• Hamming-join 
– Threshold H=3  Hamming-join(R,S)= 

{(r0, t0), (r0, t3), (r0, t4), (r0, t6)}  

{(r1, t0), (r1, t3), (r1, t4), (r1, t6)} 

{(r2, t3)}.  
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Related Work 

• Hamming distance range query processing 

• Only work for small H 

– Yao et al. 1974 

• High overhead of memory usage to maintain several 
copies of data 

– Mutli-HashTable (Manku et al. 2007), Hengine (Liu et al. 
2012), HmSearch (Zhang et al. 2013) 

• Only work for small datasets 

– Hengine(Liu et al. 2012), HmSearch (Zhang et al. 2013) 
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Challenges 

– Efficient Hamming-select  

• new index to support efficient Hamming-select 
– efficient data update 

– small space footprint 

– Efficient Hamming-join 

• efficient parallel algorithm for Hamming-join 
over two big tables 

– handle load balancing 

– guarantee lower data shuffle cost 
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Optimization Algorithm for Hamming-Select 
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• (A) Build Radix-Tree via prefix properties of data 

– Internal nodes store prefix 

– Leaf node stores tuple ID 

– Example: 
• Given Tuple t0=“001 001 010” 

• Prefix patterns of t0 

• “0” “01” “001010”  

 

 

0 1
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Optimization Algorithm for Hamming-Select 
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• (A) Query Radix-Tree for Hamming-Select 
– Search from root to leaf 

– Example: 
• Given Query=“110010110”  

    and Threshold H=“2” 

• Tuple t0 and t1 are discarded  

• Stop in upper level  of Index  
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Optimization Algorithm for Hamming-Select 
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• (A) Query Radix-Tree for Hamming-Select 
– Search from root to leaf 

– Prefix Sensitive  

– t2: “011001100”  

– t7: “111001100” 
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Optimization Algorithm for Hamming-Select 
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• (B) Static-HA-Index 

• Motivation:  
– Consider  Tuple t2  and t7  

– “011 001 100” vs “111 001 100”  

– Reduce the redundant computation?  

– Segmentation of binary code 

– For example:  
• t2 is segmented into “011 001 100” 

• t7 is segmented into “111 001 100” 

– Hamming-search from first level to bottom level 

 

 

001 011 101

001 011 101

100010 101

111

110

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12110

t7 t2 



Optimization Algorithm for Hamming-Select 

• (C) Gray-code-based ordering, Hamming distance clustering 
(Ral et al. 1991) for Dynamic HA-Index 

• Observation:  
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t0 

t1 

t2 

t7 

t4 

t6 

t3 

t5 

t2: 011 001 100 

t7: 111 001 100 
Hamming (t2, t7)=1 



– Step 1: Sort via Gray code order 
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t0=“001 001 010”, t1=“001 011 101”, t2=“011 001 100”, t3=“101 001 010”,  

t4=“101 110 110”, t5=“101 011 101”,  t6=“101 101 010”, t7=“111 001 100”,  

t0=“001 001 010”, t1=“001 011 101”, t2=“011 001 100”, t7=“111 001 100”, 

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101” 

Before 

sorting: 

After 

sorting: 

Build Dynamic HA-Index for Hamming-Select 



– Step 2: Extract common sub-sequence from binary in the same 
window 
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t0=“001 001 010”, t1=“001 011 101”, t2=“011 001 100”, t7=“111 001 100”, 

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101” 

001 0.1 … 

Build Dynamic HA-Index for Hamming-Select 



– Step 2: Extract common sub-sequence from binary in the same 
window 
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t0=“… .0. 010”, t1=“… .1. 101”,          t2=“011 001 100”, t7=“111 001 100”, 

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101” 

0010.1… 

….0.010 ….1.101 

t0 t1 

Build Dynamic HA-Index for Hamming-Select 



– Step 2: Extract common sub-sequence from binary in the same 
window 
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                                                              t2=“011 001 100”, t7=“111 001 100”, 

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101” 

0010.1… 

….0.010 ….1.101 

t0 t1 

.11001100 

0…….. 1…….. 

t2 t7 

Build Dynamic HA-Index for Hamming-Select 



– Step 2: Extract common sub-sequence from binary in the same 
window 
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t3=“101 001 010”, t5=“101 011 101” 

0010.1… 

….0.010 ….1.101 

t0 t1 

.11001100 

0…….. 1…….. 

t2 t7 
1011...10 

….101.. ….010.. 

t4 t6 

101 0.1 … 

Build Dynamic HA-Index for Hamming-Select 



– Step 2: Extract common sub-sequence from binary in the same 
window 
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t3=“….0. 010”, t5=“….1.101” 

0010.1… 

….0.010 ….1.101 

t0 t1 

.11001100 

0…….. 1…….. 

t2 t7 
1011...10 

….101.. ….010.. 

t4 t6 

101 0.1 … 

Build Dynamic HA-Index for Hamming-Select 



– Step 2: Extract common sub-sequence from binary in the same 
window 
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0010.1… 

….0.010 ….1.101 

t0 t1 

.11001100 

0…….. 1…….. 

t2 t7 

1011...10 

….101.. ….010.. 

t4 t6 

101 0.1 … 

t5 t3 

F=2 F=2 

F=1 F=1 

F=1 F=1 

Build Dynamic HA-Index for Hamming-Select 



• Build Dynamic HA-Index for Hamming-Select 
– Step 3: Continue the same process in each level 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Optimization Algorithm for Hamming-Select 



• (C) Summary of Dynamic HA-Index 
– Build index via Gray code ordering 

– Internal node: common sub-binary  

– Leaf node: tuple id 

– Support Index Operations: 
• (A) Build 

• (B) Delete 

• (C) Insert 

• (D) Hamming-select 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Optimization Algorithm for Hamming-Select 



HA-Index based 

• Hamming-Select 
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search) 

– Given Binary =“010001011” ,  

and Hamming-distance threshold=3 

–  Running Example 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” d=1 “010001011” d=3 

d=1+1 d=1+4 



HA-Index based 

• Hamming-Select 
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search) 

– Given Binary T=“010001011” ,  

and Hamming-distance threshold=3 

–  Running Example 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” “010001011” 

d=1+1 d=3+2 d=3+0 



HA-Index based 

• Hamming-Select 
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search) 

– Given Binary T=“010001011” ,  

and Hamming-distance threshold=3  

–  Running Example 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” “010001011” 
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HA-Index based 

• Hamming-Select 
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search) 

– Given Binary T=“010001011” ,  

and Hamming-distance threshold=3  

–  Running Example 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......
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HA-Index based 

• Delete Operation 
– Depth-First Search from top to bottom 

• Insert Operation 
– Similar to delete operation 
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N1 N2 N3 N4 N5 N6
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N12N11
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Hamming-join over MapReduce 
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• Framework 
– Phase 1: Sampling 

data to learn data 
partitioning rule  

– Phase 2: Parallel 
construction of the 
HA-Index 

– Phase 3: Parallel 
Hamming-join 



Hamming-join over MapReduce 

• Phase 1: Preprocessing 
I. Reservoir sampling from R and S 

II. Learn the Hash Function to map 
high dimensional data into binary 
code, i.e., spectral hashing function 

III. Map sample data into binary code, 
sort the data via gray code ordering 

IV. Get the partition pivot from the 
sorted binary code 

• Guarantees 
– Each partition has equal amount of 

data 

– Data of R and S are sorted via gray 
code ordering    
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1 3 10 … N’ 

1 2 3 4 5 6 … N 

b1 b2 b3 … bN’ 

Data distribution (i.e., histogram)  

along gray code ordering.  

Sampling 

Learn 

Hash Function 

Get Histogram 

Partition Pivot value 



Hamming-join over MapReduce 

• Phase 2: HA-Index Building 
– Partition data via the partitioning rule 
from sampling data 
– Parallel building of HA-Index in  
each reducer 
– Post-processing step to merge  
local HA-indexes into one global  
HA-Index. For example: 

• Merge internal nodes with  
the same binary codes and relink  
the pointer 
• Merge leaf nodes with the 
same binary codes 
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Hamming-join over MapReduce 

• Phase 3: Hamming-join 

– Option A:  
• Suppose the  number of 

tuples in Table R is not big 
enough, and it is affordable 
to broadcast HA-Index into 
each server 

– Broadcast HA-Index of 
Table R into each server, 
and local Hamming-Join 
with data of Table S in 
each server 
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Hamming-join over MapReduce 

• Phase 3: Hamming-join 

– Option B:  
• Leaf nodes of HA-Index 

dominate the storage 
space of HA-Index 

– HA-Index Example:  

• Leaf node: 251 MB 

• Non-leaf: 64 MB  
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Hamming-join over MapReduce 

• Phase 3: Hamming-join 
– Option B:  

• Hamming-join gets the qualifying 
binary codes 

• Post-processing step to find the 
qualifying ID 

– Example:  
• Hamming-join S0 and HA-Index 

(No-leaf nodes)= S0, “00110011”, 
“11000001”, “01100011”  

• Post-processing step to find 
“00110011” = R3, 
“11000001”=R5, 
“01100011”=R10 

• Post-processing step can be 
Hash-join or MapReduce based 
inner join 
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11
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Experimental Evaluation 

• Effect of parameters 
– Hamming select threshold  

– HA-Index window size and depth   

• Scalability of proposed approach  
– For big data more than 20 million 

– Converted to binary data from high dimensional data (images, text)   

• Speedup vs. state-of-art Hamming query approaches 
– Google’s Mutli-hash Table (WWW 07), Hengine (ICDE 2011) 

• Speedup w.r.t. exact and approximate kNN  
– Searching high dimensional data 
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Experimental Evaluation: Datasets 

• NUS-WIDE: 
– 269,648 Web images  

– Use 225-D block-wise color moments as the image features 

• Flickr: 
– Crawled 1 million images 

– Extracted 512 features via the GIST Descriptor 

• DBPedia: 
– Extracted 1 million documents 

– Applied standard NLP techniques 

– We use LDA model to extract topics and keep 250 topics per document 
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Experiments 

• Hamming distance range query baselines: 
– NestLoop  - Naive approach to linearly XOR and count the binary data 
– MultiHashTable: 

• State-of-the-art to search binary codes for similarity hashing  
• Uses multiple-hash tables to reduce the linear search cost 
• Limit to 4 (MH-4) and 10 (MH-10) hash tables to avoid memory overflow. 

– Hengine: 
• Most recent work 
• Improve the MultiHashTable approach in query time and memory 

usage 
– Radix-Tree based approach 
– Static HA-Index (SHA-Index) 
– Dynamic HA-Index (DHA-Index)}  

 
Note: SHA-Index(32) or DHA-Index(32) = Length of the binary code is 32 bits 
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Experiment 

• Effect of HA-Index:  

– Query time 
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Experiment 

• Effect of HA-Index 

– Index update time (delete and insert) 
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Experiment 

• Effect of HA-Index 

– Space usage 
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Experiment 

• Hamming-select 

– Effect of Hamming distance range query threshold 
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Experiment 

• Effect of HA-Index parameter 

– Window length and depth  
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Experiment 

• Hamming distance range query to speedup approximate KNN? 
1. Start from small Hamming distance threshold, i.e., 1, and get the qualifying 

Hamming distance range query results sets i.e., HSet 

2. KNN search over the HSet 

3. If KNN query sets are smaller than K, enlarge the Hamming distance 
threshold, and go to Steps 1 and 2 

  else exit 

Note: Produce errors but similarity hashing fn guarantees acceptable error bound 

• State-of-art approximate KNN approach  
– Locality-Sensitive Hashing (E2LSH) is the state-of-art implementation of lSH 

– LSB-TREE (TODS 2011) uses Z-order to map high-dimensional data into one-
dimensional Z-values, and index the Z-values using a B-tree 
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Experiment 

• Hamming-select: speedup over the kNN 
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Experiment 

• Evaluate the Map-Reduce Hamming-join  
– Parallel-exact-KNN-join (short as PGBJ) is the state-of-the-art 

approach for performing exact kNN-join over multi-dimensional 
data in MapReduce, 

– Parallel Hamming-join via MultiHashTable (PMH, for short) that 
handles approximate batch queries for web page duplicate 
identification 

– Parallel Hamming-join via Dynamic HA-Index (MRHA-Index, for 
short) is the approach introduced in Section 5. Specifically, in 
terms of the Hamming-join phase, if Option A is used, we term 
it MRHA-Index-A, and if Option B is used, we term it MRHA-
Index-B 
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Experiment 

• MapReduce Hamming-join: data shuffle cost 
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Experiment 

• Hamming-join: speedup over the parallel kNN 
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• Summary of experiment results 

– Data Set 

• Image(NUS, Flickr), Text(DBpedia) 

– Effect of HA-Index on Hamming-select 

• Query time:  >20x vs Hengine(Liu et al. 2012) 

• Space usage: >30x vs Hengine   

– Effect of HA-Index on Hamming-join over MapReduce 

• Data shuffle cost:  >10x vs Parallel-MH (Manku et al. 2007) 

• Speedup:  > 10x vs. Parallel-MH 
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Experiment 



Conclusion 

• Proposed several approaches to improve 
Hamming-select and Hamming-join  

• Extensive experimental evaluation using real 
data to show the performance of newly 
proposed approaches 
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Q&A 

Thank you for your attention  
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