
Efficient Processing of Hamming-Distance-Based
Similarity Search Queries over MapReduce

Mingjie Tang* Yongyang Yu* Walid G. Aref*
Qutaibah Marwan Malluhi^ Mourad Ouzzani~

*Purdue University ^Qatar University

~Qatar Computing Research Institute

EDBT 2015

Why is it Important?

• Content-based similarity search

– Image, Text, Video, Fingerprint

– Similarity search for the transformed high
dimensional vector

• Query:

Find similar Images

to a query image from
an image collection
(J. Leskovec et al. 2013)

 2

Some Preliminaries (1/3)

• Similarity Preserving Hashing is widely used for approximate
near neighbor(NN) search
 Data independent similarity hashing (LSH)

 Data-dependent similarity hashing

• Core operation of data-dependent similarity hashing is
Hamming distance range query

 (Wujun et al. 2013)

3

Step1: Hashing data to binary

Step2: Hamming-select

Preliminaries (2/3)

• Hamming Distance:

– between two strings of equal length is the number
of positions at which the corresponding symbols
are different

• Example

– String: “abcdd” and “cbcaa” is 3

– Binary codes: 1011101 and 1001001 is 2

4

Preliminaries (3/3)

• Hamming-select
– Return tuples from a dataset, where the Hamming distance to a point

query is not bigger than a predefined threshold H

– Given threshold H=3 and Q=101100010

– Hamming-select

– (Q, S)={t0, t3, t4, t6}

• Hamming-join
– Threshold H=3 Hamming-join(R,S)=

{(r0, t0), (r0, t3), (r0, t4), (r0, t6)}

{(r1, t0), (r1, t3), (r1, t4), (r1, t6)}

{(r2, t3)}.

4/3/2015 Department of Computer Science 5

Related Work

• Hamming distance range query processing

• Only work for small H

– Yao et al. 1974

• High overhead of memory usage to maintain several
copies of data

– Mutli-HashTable (Manku et al. 2007), Hengine (Liu et al.
2012), HmSearch (Zhang et al. 2013)

• Only work for small datasets

– Hengine(Liu et al. 2012), HmSearch (Zhang et al. 2013)

4/3/2015 Department of Computer Science 6

Challenges

– Efficient Hamming-select

• new index to support efficient Hamming-select
– efficient data update

– small space footprint

– Efficient Hamming-join

• efficient parallel algorithm for Hamming-join
over two big tables

– handle load balancing

– guarantee lower data shuffle cost

7

Optimization Algorithm for Hamming-Select

8

• (A) Build Radix-Tree via prefix properties of data

– Internal nodes store prefix

– Leaf node stores tuple ID

– Example:
• Given Tuple t0=“001 001 010”

• Prefix patterns of t0

• “0” “01” “001010”

0 1

01

t0

01

0 1

1100110011001100

001010 011101

01010 11101 10110 01010

t1

t3 t5 t4 t6

t7t2

t0=001 001 010

Optimization Algorithm for Hamming-Select

4/3/2015 Department of Computer Science 9

• (A) Query Radix-Tree for Hamming-Select
– Search from root to leaf

– Example:
• Given Query=“110010110”

 and Threshold H=“2”

• Tuple t0 and t1 are discarded

• Stop in upper level of Index

0 1

01

t0

01

0 1

1100110011001100

001010 011101

01010 11101 10110 01010

t1

t3 t5 t4 t6

t7t2

“110010110”

D=1

“110010110”

D=1+2>H

Optimization Algorithm for Hamming-Select

4/3/2015 Department of Computer Science 10

• (A) Query Radix-Tree for Hamming-Select
– Search from root to leaf

– Prefix Sensitive

– t2: “011001100”

– t7: “111001100”

0 1

01

t0

01

0 1

1100110011001100

001010 011101

01010 11101 10110 01010

t1

t3 t5 t4 t6

t7t2

Optimization Algorithm for Hamming-Select

4/3/2015 Department of Computer Science 11

• (B) Static-HA-Index

• Motivation:
– Consider Tuple t2 and t7

– “011 001 100” vs “111 001 100”

– Reduce the redundant computation?

– Segmentation of binary code

– For example:
• t2 is segmented into “011 001 100”

• t7 is segmented into “111 001 100”

– Hamming-search from first level to bottom level

001 011 101

001 011 101

100010 101

111

110

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12110

t7 t2

Optimization Algorithm for Hamming-Select

• (C) Gray-code-based ordering, Hamming distance clustering
(Ral et al. 1991) for Dynamic HA-Index

• Observation:

4/3/2015 Department of Computer Science 12

t0

t1

t2

t7

t4

t6

t3

t5

t2: 011 001 100

t7: 111 001 100
Hamming (t2, t7)=1

– Step 1: Sort via Gray code order

4/3/2015 Department of Computer Science 13

t0=“001 001 010”, t1=“001 011 101”, t2=“011 001 100”, t3=“101 001 010”,

t4=“101 110 110”, t5=“101 011 101”, t6=“101 101 010”, t7=“111 001 100”,

t0=“001 001 010”, t1=“001 011 101”, t2=“011 001 100”, t7=“111 001 100”,

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101”

Before

sorting:

After

sorting:

Build Dynamic HA-Index for Hamming-Select

– Step 2: Extract common sub-sequence from binary in the same
window

4/3/2015 Department of Computer Science 14

t0=“001 001 010”, t1=“001 011 101”, t2=“011 001 100”, t7=“111 001 100”,

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101”

001 0.1 …

Build Dynamic HA-Index for Hamming-Select

– Step 2: Extract common sub-sequence from binary in the same
window

4/3/2015 Department of Computer Science 15

t0=“… .0. 010”, t1=“… .1. 101”, t2=“011 001 100”, t7=“111 001 100”,

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101”

0010.1…

….0.010 ….1.101

t0 t1

Build Dynamic HA-Index for Hamming-Select

– Step 2: Extract common sub-sequence from binary in the same
window

4/3/2015 Department of Computer Science 16

 t2=“011 001 100”, t7=“111 001 100”,

t4=“101 110 110”, t6=“101 101 010”, t3=“101 001 010”, t5=“101 011 101”

0010.1…

….0.010 ….1.101

t0 t1

.11001100

0…….. 1……..

t2 t7

Build Dynamic HA-Index for Hamming-Select

– Step 2: Extract common sub-sequence from binary in the same
window

4/3/2015 Department of Computer Science 17

t3=“101 001 010”, t5=“101 011 101”

0010.1…

….0.010 ….1.101

t0 t1

.11001100

0…….. 1……..

t2 t7
1011...10

….101.. ….010..

t4 t6

101 0.1 …

Build Dynamic HA-Index for Hamming-Select

– Step 2: Extract common sub-sequence from binary in the same
window

4/3/2015 Department of Computer Science 18

t3=“….0. 010”, t5=“….1.101”

0010.1…

….0.010 ….1.101

t0 t1

.11001100

0…….. 1……..

t2 t7
1011...10

….101.. ….010..

t4 t6

101 0.1 …

Build Dynamic HA-Index for Hamming-Select

– Step 2: Extract common sub-sequence from binary in the same
window

4/3/2015 Department of Computer Science 19

0010.1…

….0.010 ….1.101

t0 t1

.11001100

0…….. 1……..

t2 t7

1011...10

….101.. ….010..

t4 t6

101 0.1 …

t5 t3

F=2 F=2

F=1 F=1

F=1 F=1

Build Dynamic HA-Index for Hamming-Select

• Build Dynamic HA-Index for Hamming-Select
– Step 3: Continue the same process in each level

4/3/2015 Department of Computer Science 20

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Optimization Algorithm for Hamming-Select

• (C) Summary of Dynamic HA-Index
– Build index via Gray code ordering

– Internal node: common sub-binary

– Leaf node: tuple id

– Support Index Operations:
• (A) Build

• (B) Delete

• (C) Insert

• (D) Hamming-select

4/3/2015 Department of Computer Science 21

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Optimization Algorithm for Hamming-Select

HA-Index based

• Hamming-Select
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

– Given Binary =“010001011” ,

and Hamming-distance threshold=3

– Running Example

4/3/2015 Department of Computer Science 22

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” d=1 “010001011” d=3

d=1+1 d=1+4

HA-Index based

• Hamming-Select
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

– Given Binary T=“010001011” ,

and Hamming-distance threshold=3

– Running Example

4/3/2015 Department of Computer Science 23

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” “010001011”

d=1+1 d=3+2 d=3+0

HA-Index based

• Hamming-Select
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

– Given Binary T=“010001011” ,

and Hamming-distance threshold=3

– Running Example

4/3/2015 Department of Computer Science 24

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” “010001011”

d=1+1

d=2+3

d=3+0

d=2+1

“010001011”

HA-Index based

• Hamming-Select
– Searching from top to bottom (Breadth-First-Search or Depth-First-Search)

– Given Binary T=“010001011” ,

and Hamming-distance threshold=3

– Running Example

4/3/2015 Department of Computer Science 25

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

“010001011” “010001011”

d=3+1

d=3+0

d=3+3

Visited

HA-Index based

• Delete Operation
– Depth-First Search from top to bottom

• Insert Operation
– Similar to delete operation

4/3/2015 Department of Computer Science 26

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Hamming-join over MapReduce

4/3/2015 Department of Computer Science 28

..

.

..

.

Shuffle

&

Sor t

Shuffle

&

Sor t

R1

..

.

..

.

..

.

..

.

Phase 2:

First MapReduce

Phase 3:

Second MapReduce

H-Build

DFS

Node1

Phase 1:

Preprocessing

R

S

Sampling,

Learn Hash,

Pivot Selection

G2

G3

..

.

..

.

..

.

..

.

..

.

..

.

Merge into

HA-Index

Of R

MAP

:HA-Index

H-Search

REDUCEREDUCE MAP

DFS

DFS

DFS

:Hashing and Par tition

H-Build

H-Build

H-Search

H-Search

R4

R5

R8

Node2

R9

R12

Node3

Node1

Node2

Node3

S1

S10

S11

S18

S19

S29

G1

G1

G2

G3

• Framework
– Phase 1: Sampling

data to learn data
partitioning rule

– Phase 2: Parallel
construction of the
HA-Index

– Phase 3: Parallel
Hamming-join

Hamming-join over MapReduce

• Phase 1: Preprocessing
I. Reservoir sampling from R and S

II. Learn the Hash Function to map
high dimensional data into binary
code, i.e., spectral hashing function

III. Map sample data into binary code,
sort the data via gray code ordering

IV. Get the partition pivot from the
sorted binary code

• Guarantees
– Each partition has equal amount of

data

– Data of R and S are sorted via gray
code ordering

 4/3/2015 Department of Computer Science 29

1 3 10 … N’

1 2 3 4 5 6 … N

b1 b2 b3 … bN’

Data distribution (i.e., histogram)

along gray code ordering.

Sampling

Learn

Hash Function

Get Histogram

Partition Pivot value

Hamming-join over MapReduce

• Phase 2: HA-Index Building
– Partition data via the partitioning rule
from sampling data
– Parallel building of HA-Index in
each reducer
– Post-processing step to merge
local HA-indexes into one global
HA-Index. For example:

• Merge internal nodes with
the same binary codes and relink
the pointer
• Merge leaf nodes with the
same binary codes

4/3/2015 Department of Computer Science 30

..

.

..

.

Shuffle

&

Sor t

R1

..

.

..

.

..

.

..

.

Phase 2:

First MapReduce

H-BuildNode1

G2

G3

Merge into

HA-Index

Of R

MAP REDUCE

DFS

DFS

DFS

H-Build

H-Build

R4

R5

R8

Node2

R9

R12

Node3

G1 :HA-Index

:Data par tition

Hamming-join over MapReduce

• Phase 3: Hamming-join

– Option A:
• Suppose the number of

tuples in Table R is not big
enough, and it is affordable
to broadcast HA-Index into
each server

– Broadcast HA-Index of
Table R into each server,
and local Hamming-Join
with data of Table S in
each server

4/3/2015 Department of Computer Science 31

Shuffle

&

Sor t

Phase 3:

Second MapReduce

DFS

..

.

..

.

..

.

..

.

..

.

..

.

:HA-Index of Table R

H-Search

REDUCEMAP

:Hashing and Par tition

H-Search

H-Search

Node1

Node2

Node3

S1

S10

S11

S15

S16

S29

G1

G2

G3

Hamming-join over MapReduce

• Phase 3: Hamming-join

– Option B:
• Leaf nodes of HA-Index

dominate the storage
space of HA-Index

– HA-Index Example:

• Leaf node: 251 MB

• Non-leaf: 64 MB

4/3/2015 Department of Computer Science 32

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

No Leaf Nodes

Hamming-join over MapReduce

• Phase 3: Hamming-join
– Option B:

• Hamming-join gets the qualifying
binary codes

• Post-processing step to find the
qualifying ID

– Example:
• Hamming-join S0 and HA-Index

(No-leaf nodes)= S0, “00110011”,
“11000001”, “01100011”

• Post-processing step to find
“00110011” = R3,
“11000001”=R5,
“01100011”=R10

• Post-processing step can be
Hash-join or MapReduce based
inner join

4/3/2015 Department of Computer Science 33

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

Experimental Evaluation

• Effect of parameters
– Hamming select threshold

– HA-Index window size and depth

• Scalability of proposed approach
– For big data more than 20 million

– Converted to binary data from high dimensional data (images, text)

• Speedup vs. state-of-art Hamming query approaches
– Google’s Mutli-hash Table (WWW 07), Hengine (ICDE 2011)

• Speedup w.r.t. exact and approximate kNN
– Searching high dimensional data

4/3/2015 Department of Computer Science 34

Experimental Evaluation: Datasets

• NUS-WIDE:
– 269,648 Web images

– Use 225-D block-wise color moments as the image features

• Flickr:
– Crawled 1 million images

– Extracted 512 features via the GIST Descriptor

• DBPedia:
– Extracted 1 million documents

– Applied standard NLP techniques

– We use LDA model to extract topics and keep 250 topics per document

4/3/2015 Department of Computer Science 35

Experiments

• Hamming distance range query baselines:
– NestLoop - Naive approach to linearly XOR and count the binary data
– MultiHashTable:

• State-of-the-art to search binary codes for similarity hashing
• Uses multiple-hash tables to reduce the linear search cost
• Limit to 4 (MH-4) and 10 (MH-10) hash tables to avoid memory overflow.

– Hengine:
• Most recent work
• Improve the MultiHashTable approach in query time and memory

usage
– Radix-Tree based approach
– Static HA-Index (SHA-Index)
– Dynamic HA-Index (DHA-Index)}

Note: SHA-Index(32) or DHA-Index(32) = Length of the binary code is 32 bits

4/3/2015 Department of Computer Science 36

Experiment

• Effect of HA-Index:

– Query time

4/3/2015 Department of Computer Science 37

Experiment

• Effect of HA-Index

– Index update time (delete and insert)

4/3/2015 Department of Computer Science 38

Experiment

• Effect of HA-Index

– Space usage

4/3/2015 Department of Computer Science 39

Experiment

• Hamming-select

– Effect of Hamming distance range query threshold

4/3/2015 Department of Computer Science 40

Experiment

• Effect of HA-Index parameter

– Window length and depth

4/3/2015 Department of Computer Science 41

Experiment

• Hamming distance range query to speedup approximate KNN?
1. Start from small Hamming distance threshold, i.e., 1, and get the qualifying

Hamming distance range query results sets i.e., HSet

2. KNN search over the HSet

3. If KNN query sets are smaller than K, enlarge the Hamming distance
threshold, and go to Steps 1 and 2

 else exit

Note: Produce errors but similarity hashing fn guarantees acceptable error bound

• State-of-art approximate KNN approach
– Locality-Sensitive Hashing (E2LSH) is the state-of-art implementation of lSH

– LSB-TREE (TODS 2011) uses Z-order to map high-dimensional data into one-
dimensional Z-values, and index the Z-values using a B-tree

4/3/2015 Department of Computer Science 42

Experiment

• Hamming-select: speedup over the kNN

4/3/2015 Department of Computer Science 43

Experiment

• Evaluate the Map-Reduce Hamming-join
– Parallel-exact-KNN-join (short as PGBJ) is the state-of-the-art

approach for performing exact kNN-join over multi-dimensional
data in MapReduce,

– Parallel Hamming-join via MultiHashTable (PMH, for short) that
handles approximate batch queries for web page duplicate
identification

– Parallel Hamming-join via Dynamic HA-Index (MRHA-Index, for
short) is the approach introduced in Section 5. Specifically, in
terms of the Hamming-join phase, if Option A is used, we term
it MRHA-Index-A, and if Option B is used, we term it MRHA-
Index-B

4/3/2015 Department of Computer Science 44

Experiment

• MapReduce Hamming-join: data shuffle cost

4/3/2015 Department of Computer Science 45

Experiment

• Hamming-join: speedup over the parallel kNN

4/3/2015 Department of Computer Science 46

• Summary of experiment results

– Data Set

• Image(NUS, Flickr), Text(DBpedia)

– Effect of HA-Index on Hamming-select

• Query time: >20x vs Hengine(Liu et al. 2012)

• Space usage: >30x vs Hengine

– Effect of HA-Index on Hamming-join over MapReduce

• Data shuffle cost: >10x vs Parallel-MH (Manku et al. 2007)

• Speedup: > 10x vs. Parallel-MH

4/3/2015 Department of Computer Science 47

Experiment

Conclusion

• Proposed several approaches to improve
Hamming-select and Hamming-join

• Extensive experimental evaluation using real
data to show the performance of newly
proposed approaches

4/3/2015 Department of Computer Science 48

Q&A

Thank you for your attention

4/3/2015 Department of Computer Science 49

Reference- LSH

• Gionis, Aristides and Indyk, Piotr and Motwani, Rajeev: Similarity Search in High Dimensions via
Hashing. (Gionis VLDB99)

• Alexandr Andoni and Piotr Indyk : Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. Communications of the ACM, vol. 51, no. 1, 2008, pp. 117-122.
(E2LSH 2008)

• Manku, Gurmeet Singh and Jain, Arvind and Das Sarma, Anish: Detecting near-duplicates for
web crawling. (ManKu WWW07)

• Lee, Hongrae and Ng, Raymond T. and Shim, Kyuseok: Similarity Join Size Estimation Using
Locality Sensitive Hashing. (Lee VLDB2011)

• Song, Jingkuan and Yang, Yang and Yang, Yi and Huang, Zi and Shen, Heng Tao: Inter-media
Hashing for Large-scale Retrieval from Heterogeneous Data Sources. (Song SIGMOD2013)

• Yasin N. Silva, Walid G. Aref, Per-Åke Larson, Spencer S. Pearson, and Mohamed H. Ali:
Similarity queries: their conceptual evaluation, transformations, and processing. VLDB Journal
2012, pp. 1–26.(Yasin VLDBJ2012)

• Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary
codes. In Proceedings of Computer Vision and Pattern Recognition, 2011.

• S. Kumar and R. Udupa. Learning hash functions for cross-view similarity search. In IJCAI, pages
1360{1365, 2011.

4/3/2015 Department of Computer Science 50

Reference

• J. Buhler. "Provably sensitive indexing strategies for biosequence similarity search." Journal of Computational
Biology 10(3/4):399-418, 2003. (An earlier version of this work appeared at ACM RECOMB 2002.) (J. Buhler
2003)

• B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In Proceedings of
International Conference on Computer Vision, 2009.

• B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics. IEEE Trans. Pattern Anal. Mach.
Intell., 31(12):2143{2157, 2009.

• Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proceedings of Neural Information Processing
Systems, 2008.

• Christian Böhm and Hans-peter Kriegel: A cost model and index architecture for the similarity join. In ICDE
2001

• Elke Achtert, Hans-Peter Kriegel, Arthur Zimek: ELKI: A Software System for Evaluation of Subspace Clustering
Algorithms. 20th International Conference on Scientific and Statistical Database Management (SSDBM
2008), Hong Kong, China, 2008.

• Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu (1996-). "A density-based algorithm for discovering
clusters in large spatial databases with noise". Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96).. pp. 226–231

• R. Sibson : SLINK: Single Link Clustering: Hierarchical clustering algorithm based on single-link connectivity.
The Computer Journal 16 (1973)

• M. Zaharia 2013. An Architecture for Fast and General Data Processing on Large Clusters (PhD Disseration).
• Kanungo, Tapas ; Almaden Res. Center, San Jose, CA, USA ; Mount, D.M. ; Netanyahu, N.S. ; Piatko, C.D. An

efficient k-means clustering algorithm: analysis and implementation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on , Jul 2002

4/3/2015 Department of Computer Science 51

